Solving systems of nonlinear matrix equations involving Lipshitzian mappings

被引:0
作者
Maher Berzig
Bessem Samet
机构
[1] Ecole Supérieure des Sciences et Techniques de Tunis,Université de Tunis
来源
Fixed Point Theory and Applications | / 2011卷
关键词
nonlinear matrix equations; Lipshitzian mappings; Banach contraction principle; iterative method; fixed point; Thompson metric;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, both theoretical results and numerical methods are derived for solving different classes of systems of nonlinear matrix equations involving Lipshitzian mappings.
引用
收藏
相关论文
共 37 条
  • [1] Banach S(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fund Math 3 133-181
  • [2] Ćirić L(2)A generalization of Banach's contraction principle Proc Am Math Soc 45 273-273
  • [3] Thompson A(1963)On certain contraction mappings in a partially ordered vector space Proc Am Math Soc 14 438-443
  • [4] Nussbaum R(1988)Hilbert's projective metric and iterated nonlinear maps Mem Amer Math Soc 75 1-137
  • [5] Nussbaum R(1994)Finsler structures for the part metric and Hilbert' projective metric and applications to ordinary differential equations Differ Integral Equ 7 1649-1707
  • [6] Lim Y(2009)Solving the nonlinear matrix equation Linear Algebra Appl 430 1380-1383
  • [7] Duan X(2009) via a contraction principle J Comput Appl Math 229 27-36
  • [8] Liao A(2008)On Hermitian positive definite solution of the matrix equation Linear Algebra Appl 429 110-121
  • [9] Duan X(2009)On the nonlinear matrix equation Surv Math Appl 4 179-190
  • [10] Liao A(2005)Positive defined solution of two kinds of nonlinear matrix equations Linear Algebra Appl 404 166-182