Heat Flows of Subelliptic Harmonic Maps into Riemannian Manifolds with Nonpositive Curvatures

被引:0
作者
Zhen-Rong Zhou
机构
[1] Central China Normal University,Department of Mathematics
来源
Journal of Geometric Analysis | 2013年 / 23卷
关键词
Subelliptic harmonic map; Heat flow; Sub-Riemannian geometry; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the heat flows of subelliptic harmonic maps into Riemannian manifolds with nonpositive curvatures, and prove the homotopic existence which is a generalization of the Eells–Sampson theorem.
引用
收藏
页码:471 / 489
页数:18
相关论文
共 10 条
[1]  
Eells J.(1964)Harmonic mappings of Riemannian manifolds Am. J. Math. 85 109-160
[2]  
Sampson J.(1998)Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces Math. Ann. 312 341-362
[3]  
Hajlasz P.(1998)Subelliptic harmonic maps Trans. Am. Math. Soc. 350 4633-4649
[4]  
Strzelecki P.(1984)Fundamental solutions and geometry of the sum of squares of vector fields Invent. Math. 78 142-160
[5]  
Jost J.(1986)Sub-Riemannian geometry J. Differ. Geom. 24 221-263
[6]  
Xu C.J.(2003)Subelliptic harmonic maps from Carnot groups Calc. Var. 18 95-115
[7]  
Sanchez-Calle A.(1999)Uniqueness of subelliptic harmonic maps Ann. Glob. Anal. Geom. 17 581-594
[8]  
Strichartz R.S.(undefined)undefined undefined undefined undefined-undefined
[9]  
Wang C.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhou Z.R.(undefined)undefined undefined undefined undefined-undefined