On entropy, regularity and rigidity for convex representations of hyperbolic manifolds

被引:0
作者
A. Sambarino
机构
[1] Université Paris Sud,Departement de Mathématiques
来源
Mathematische Annalen | 2016年 / 364卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a convex representation ρ:Γ→PGL(d,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :\Gamma \rightarrow {{\mathrm{PGL}}}(d,\mathbb {R})$$\end{document} of a convex cocompact group Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of Isom+Hk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Isom}}}_+\mathbb {H}^k,$$\end{document} we find upper bounds for the quantity αhρ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha h_\rho ,$$\end{document} where hρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_\rho $$\end{document} is the entropy of ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the Hölder exponent of the equivariant map ∂∞Γ→P(Rd).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\partial }_{\infty }}\Gamma \rightarrow \mathbb {P}(\mathbb {R}^d).$$\end{document} We also give rigidity statements when the upper bound is attained. This provides an analog of Thurston’s metric for convex cocompact groups of Isom+Hk.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Isom}}}_+\mathbb {H}^k.$$\end{document} We then prove that if ρ:π1Σ→PSL(d,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :\pi _1\Sigma \rightarrow {{\mathrm{PSL}}}(d,\mathbb {R})$$\end{document} is in the Hitchin component then αhρ≤2/(d-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha h_\rho \le 2/(d-1)$$\end{document} (where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the Hölder exponent of Labourie’s equivariant flag curve) with equality if and only if ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is Fuchsian.
引用
收藏
页码:453 / 483
页数:30
相关论文
共 17 条
[1]  
Abramov LM(1959)On the entropy of a flow Dokl. Akad. Nauk. SSSR 128 873-875
[2]  
Benoist Y(1997)Propriétés asymptotiques des groupes linéaires Geom. Funct. Anal. 7 1-47
[3]  
Benoist Y(2005)Convexes divisibles III Ann. Sci. École Norm. Sup. 38 793-832
[4]  
Bourdon M(1995)Structure conforme au bord et flot géodésique d’un CAT Enseign. Math. 2 63-102
[5]  
Bowen R(1975)-espace Invent. Math. 29 181-202
[6]  
Ruelle D(2009)The ergodic theory of axiom A flows J. Modern Dyn. 3 511-547
[7]  
Crampon M(2012)Entropies of compact strictly convex projective manifolds Invent. Math. 190 357-438
[8]  
Guichard O(1992)Anosov representations: domains of discontinuity and applications Ergodic Theor. Dyn. Syst. 12 67-74
[9]  
Wienhard A(1992)Time preserving conjugacies of geodesic flows Topology 31 449-473
[10]  
Hamenstädt U(2006)Lie groups and Teichmüller space Invent. Math. 165 51-114