A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy

被引:0
作者
Xueli Ji
Guohui Zhu
Jinyu Gou
Suyun Chen
Wenyu Zhao
Zhanquan Sun
Hongliang Fu
Hui Wang
机构
[1] Xinhua Hospital,Department of Nuclear Medicine
[2] Shanghai Jiao Tong University School of Medicine,Institute of Optical
[3] University of Shanghai for Science and Technology,Electrical and Computer Engineering
来源
Annals of Nuclear Medicine | 2024年 / 38卷
关键词
Dynamic renal scintigraphy; Renal function; Regions of interest; Deep learning; Pediatric;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:382 / 390
页数:8
相关论文
共 163 条
  • [1] Çamlar SA(2017)The role of dynamic renal scintigraphy on clinical decision making in hydronephrotic children Saudi J Kidney Dis Transpl 28 76-80
  • [2] Deveci N(2021)Prognostic value of dynamic renal scan with 99mTc-EC in patients with kidney transplantation: a prospective descriptive study Nucl Med Commun 42 469-475
  • [3] Soylu A(2020)Renal functional outcome after laparoscopic partial nephrectomy using dynamic renal scintigraphy Can J Urol 27 10402-10406
  • [4] Türkmen MA(2008)Differential renal function estimation by dynamic renal scintigraphy: influence of background definition and radiopharmaceutical Nucl Med Commun 29 1002-1005
  • [5] Özmen D(2001)Supranormal differential renal function is real but may be pathological: assessment by 99m technetium mercaptoacetyltriglycine renal scan of congenital unilateral hydronephrosis J Urol 165 2300-2304
  • [6] Çapakaya G(2017)Interobserver agreement on cortical tracer transit in 99mTc-MAG3 renography applied to congenital hydronephrosis Nucl Med Commun 38 124-128
  • [7] Arefnia M(2008)Reproducibility of 99mTc-mercaptoacetyltriglycine renography: population comparison Nucl Med Commun 29 695-704
  • [8] Masoumi N(2012)Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry IEEE Trans Med Imaging 31 312-325
  • [9] Ghodsirad MA(2019)Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-learning-based Kidney Segmentation Sci Rep 9 4223-852
  • [10] Moghaddam EJ(2018)Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: a dynamic solution to a dynamic problem J Urol 199 847-295