The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions

被引:0
|
作者
Hui Yin Nam
Belinda Pingguan-Murphy
Azlina Amir Abbas
Azhar Mahmood Merican
Tunku Kamarul
机构
[1] University of Malaya,Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine
[2] University of Malaya,Department of Biomedical Engineering, Faculty of Engineering
来源
Biomechanics and Modeling in Mechanobiology | 2015年 / 14卷
关键词
Mechanical stimulation; Proliferation; Differentiation; Tissue engineering; Mesenchymal stromal cells; Mechanotransduction;
D O I
暂无
中图分类号
学科分类号
摘要
It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circledR $$\end{document} assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 1 Hz was applied. However, at 8 % strain +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.
引用
收藏
页码:649 / 663
页数:14
相关论文
共 50 条
  • [1] The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions
    Nam, Hui Yin
    Pingguan-Murphy, Belinda
    Abbas, Azlina Amir
    Merican, Azhar Mahmood
    Kamarul, Tunku
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2015, 14 (03) : 649 - 663
  • [2] Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells
    Hui Yin Nam
    Pingguan-Murphy, Belinda
    Abbas, Azlina Amir
    Merican, Azhar Mahmood
    Kamarul, Tunku
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [3] Effects of simvastatin on the proliferation and differentiation of human bone marrow-derived stromal cell
    Baek, KH
    Kang, MI
    Cho, SY
    Cho, JY
    Son, HY
    Lee, KW
    Kang, SK
    Kim, CC
    BONE, 2003, 32 (05) : S146 - S147
  • [4] Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells
    Li, D.
    Dai, K.
    Tang, T.
    CYTOTHERAPY, 2008, 10 (06) : 587 - 596
  • [5] Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells
    Chai Wei
    Ni Ming
    Rui Yun-feng
    Zhang Kai-yi
    Zhang Qiang
    Xu Liang-liang
    Chan Kai-ming
    Li Gang
    Wang Yan
    CHINESE MEDICAL JOURNAL, 2013, 126 (08) : 1509 - 1516
  • [6] Molecular Targeting Regulation of Proliferation and Differentiation of the Bone Marrow-Derived Mesenchymal Stem Cells or Mesenchymal Stromal Cells
    Chen, Bei-Yu
    Wang, Xi
    Chen, Liang-Wei
    Luo, Zhuo-Jing
    CURRENT DRUG TARGETS, 2012, 13 (04) : 561 - 571
  • [7] Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells
    CHAI Wei
    NI Ming
    RUI Yun-feng
    ZHANG Kai-yi
    ZHANG Qiang
    XU Liang-liang
    CHAN Kai-ming
    LI Gang
    WANG Yan
    中华医学杂志(英文版), 2013, (08) : 1509 - 1516
  • [8] Bone marrow-derived mesenchymal stromal cell: what next?
    Borges, Fernanda T.
    Convento, Marcia Bastos
    Schor, Nestor
    STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS, 2018, 11 : 77 - 83
  • [9] Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation
    Choi, Kyung-Min
    Seo, Young-Kwon
    Yoon, Hee-Hoon
    Song, Kye-Yong
    Kwon, Soon-Yong
    Lee, Hwa-Sung
    Park, Jung-Keug
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2008, 105 (06) : 586 - 594
  • [10] Sonic hedgehog promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells in vitro
    Warzecha, JJP
    Goettig, S
    Lucarelli, E
    Kurth, A
    BONE, 2005, 36 : S176 - S176