On the Structure of Pseudo BL-algebras and Pseudo Hoops in Quantum Logics

被引:0
作者
A. Dvurečenskij
R. Giuntini
T. Kowalski
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Università degli Studi di Cagliari,Facolta delle Scienze Filosofiche e Pedagogiche
来源
Foundations of Physics | 2010年 / 40卷
关键词
Pseudo MV-algebra; Pseudo BL-algebra; Pseudo hoop; Good pseudo BL-algebra; -group; Unital ; -group; Quantum logic; Wajsberg algebra; Łukasiewicz logic; State;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of the paper is to solve a problem posed in Di Nola et al. (Multiple Val. Logic 8:715–750, 2002) whether every pseudo BL-algebra with two negations is good, i.e. whether the two negations commute. This property is intimately connected with possessing a state, which in turn is essential in quantum logical applications. We approach the solution by describing the structure of pseudo BL-algebras and pseudo hoops as important families of quantum structures. We show when a pseudo hoop can be embedded into the negative cone of the reals. We give an equational base characterizing representable pseudo hoops. We also describe some subvarieties: normal-valued, and varieties where each maximal filter is normal. We produce some noncommutative covers and extend the area where each algebra is good. Finally, we show that there are uncountably many subvarieties of pseudo BL-algebras having members that are not good.
引用
收藏
页码:1519 / 1542
页数:23
相关论文
共 53 条
  • [1] Aglianò P.(2003)Varieties of BL-algebras I: general properties J. Pure Appl. Algebra 181 105-129
  • [2] Montagna F.(1936)The logic of quantum mechanics Ann. Math. 37 823-834
  • [3] Birkhoff G.(2003)The structure of residuated lattices Inter. J. Algebra Comput. 13 437-461
  • [4] von Neumann J.(1966)Komplementäre Halbgruppen. Axiomatik und Arithmetik Fund. Math. 64 257-287
  • [5] Blount K.(1970)Komplementäre Halbgruppen. Kongruenzen and Quotienten Fund. Math. 69 1-14
  • [6] Tsinaks C.(1958)Algebraic analysis of many-valued logics Trans. Am. Math. Soc. 88 467-490
  • [7] Bosbach B.(2008)On perfect GMV-algebras Commun. Algebra 36 1221-1249
  • [8] Bosbach B.(2002)Pseudo-BL algebras. I Multiple Val. Logic 8 673-714
  • [9] Chang C.C.(2002)Pseudo-BL algebras. II Multiple Val. Logic 8 715-750
  • [10] Di Nola A.(2002)Pseudo MV-algebras are intervals in J. Aust. Math. Soc. 70 427-445