b-Chromatic Number of Cartesian Product of Some Families of Graphs

被引:0
|
作者
R. Balakrishnan
S. Francis Raj
T. Kavaskar
机构
[1] Bharathidasan University,Department of Mathematics
[2] Pondicherry University,Department of Mathematics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
b-Chromatic number; Cartesian product; Hypercubes; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. It is known that for any two graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq {\rm {max}} \{b(G), b(H)\}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square}$$\end{document} stands for the Cartesian product. In this paper, we determine some families of graphs G and H for which strict inequality holds. More precisely, we show that for these graphs G and H, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b(G \square H) \geq b(G) + b(H) - 1}$$\end{document} . This generalizes one of the results due to Kouider and Mahéo.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 50 条
  • [21] Some comparative results concerning the Grundy and b-chromatic number of graphs
    Masih, Zoya
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 1 - 6
  • [22] On the Locating Chromatic Number of the Cartesian Product of Graphs
    Behtoei, Ali
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 221 - 235
  • [23] The b-chromatic number and f-chromatic vertex number of regular graphs
    El Sahili, Amine
    Kheddouci, Hamamache
    Kouider, Mekkia
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 79 - 85
  • [24] The b-chromatic number of power graphs of complete caterpillars
    Effantin, Brice
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2005, 8 (03) : 483 - 502
  • [25] ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS
    Jakovac, Marko
    Peterin, Iztok
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (02) : 156 - 169
  • [26] ON FUZZY CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME FUZZY GRAPHS AND ITS APPLICATION
    Rosyida, Isnaini
    Widodo
    Indrati, Ch. Rini
    Indriati, Diari
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (02): : 237 - 252
  • [27] A COMPARATIVE STUDY ON ACHROMATIC AND B-CHROMATIC NUMBER OF CERTAIN GRAPHS
    Thilagavathy, K. P.
    Santha, A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 39 - 44
  • [28] A complexity dichotomy for critical values of the b-chromatic number of graphs
    Jaffke, Lars
    Lima, Paloma T.
    THEORETICAL COMPUTER SCIENCE, 2020, 815 (815) : 182 - 196
  • [29] Investigating the b-chromatic number of bipartite graphs by using the bicomplement
    Alkhateeb, Mais
    Kohl, Anja
    DISCRETE APPLIED MATHEMATICS, 2014, 163 : 113 - 126
  • [30] b-Chromatic Sum and b-Continuity Property of Some Graphs
    Lisna, P. C.
    Sunitha, M. S.
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (03)