Hausdorff and Dunkl–Hausdorff operators in Lebesgue spaces for monotone functions and monotone weights

被引:0
作者
Sandhya Jain
Pankaj Jain
机构
[1] Vivekananda College (University of Delhi),Department of Mathematics
[2] South Asian University,Department of Mathematics
来源
Positivity | 2023年 / 27卷
关键词
Hausdorff operator; Dunkl–Hausdorff operator; Monotone functions; Boundedness; Sawyer’s duality principle; 47B38; 26D10; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the Lvp(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p_v(\mathbb {R}^+)$$\end{document}-Luq(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q_u(\mathbb {R}^+)$$\end{document} boundedness of the Hausdorff operator Hϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\phi $$\end{document} on the cone of non-increasing functions for 1<p≤q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p\le q<\infty $$\end{document} as well as 1<q<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p<\infty $$\end{document}. We also consider the more general Dunkl–Hausdorff operator Hα,ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\alpha ,\phi }$$\end{document} and characterize its weighted Lp(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {R}^+)$$\end{document} boundedness for monotone weights.
引用
收藏
相关论文
共 41 条
  • [1] Bandaliev RA(2006)Two-weight inequalities for convolution operators in Lebesgue space Math. Notes 80 3-10
  • [2] Bandaliyev R(2019)Hausdorff operator in Lebesgue spaces Math. Inequal. Appl. 22 657-676
  • [3] Górka P(2012)Two-weight norm inequalities for certain singular integrals Taiwanese J. Math. 16 713-732
  • [4] Bandaliev RA(2020)On boundedness of multidimensional Hausdorff operator in weighted Lebesgue spaces Tbilisi Math. J. 13 39-45
  • [5] Omarova KK(2021)On two-weight inequalities for Hausdorff operators of special kind in Lebesgue spaces, Hacettepe J. Math. Stat. 50 1334-1346
  • [6] Bandaliyev RA(1991)Weighted norm inequalities for operators of Hardy type Proc. Am. Math. Soc. 113 135-141
  • [7] Safarova KH(2000)The Hausdorff and the quasi-Hausdorff operators on the space Math. Inequal. Appl. 3 105-115
  • [8] Bandaliyev RA(2002)Multivariate Hausdorff operaors on the space J. Math. Anal. Appl. 271 443-454
  • [9] Safarova KH(2013)Hausdorff operators on function spaces Chin. Ann. Math. Ser. B 33 537-556
  • [10] Bloom S(2019)The Dunkl-Hausdorff operator is bounded on the real Hardy space Integral Transform. Spec. Funct. 30 882-892