A Geometric Characterization of Quantum Gates

被引:0
|
作者
Yi-Bin He
Li Wang
机构
[1] Taiyuan University of Technology,College of Software
[2] Taiyuan University of Technology,College of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum gates are unitary operators and pure states are denoted by unit vectors in state spaces. A quantum gate (i.e., unitary operator) maps convex combinations of vectors in the closed unit ball of the state space to themselves. On the contrary, whether or not some kinds of convex combinations preserving maps on the closed unit ball of the state space are unitary. In the paper, we devote to giving an answer to the inverse problem.
引用
收藏
页码:2218 / 2227
页数:9
相关论文
共 50 条
  • [1] A Geometric Characterization of Quantum Gates
    He, Yi-Bin
    Wang, Li
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (07) : 2218 - 2227
  • [2] Inertial geometric quantum logic gates
    Turyansky, D.
    Ovdat, O.
    Dann, R.
    Aqua, Z.
    Kosloff, R.
    Dayan, B.
    Pick, A.
    PHYSICAL REVIEW APPLIED, 2024, 21 (05):
  • [3] COMPOSITE PULSES AS GEOMETRIC QUANTUM GATES
    Ota, Yukihiro
    Kondo, Yasushi
    DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 125 - 149
  • [4] Geometric quantum gates with superconducting qubits
    Kamleitner, I.
    Solinas, P.
    Mueller, C.
    Shnirman, A.
    Mottonen, M.
    PHYSICAL REVIEW B, 2011, 83 (21):
  • [5] Quantum gates and their coexisting geometric phases
    Wu, Lian-Ao
    Bishop, C. Allen
    Byrd, Mark S.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [6] Geometric methods for construction of quantum gates
    Giunashvili Z.
    Journal of Mathematical Sciences, 2008, 153 (2) : 120 - 158
  • [7] Geometric quantum machine learning with horizontal quantum gates
    Wiersema, Roeland
    Kemper, Alexander F.
    Bakalov, Bojko N.
    Killoran, Nathan
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [8] Geometric phase gates in dissipative quantum dynamics
    Mueller, Kai
    Luoma, Kimmo
    Strunz, Walter T.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [9] State-Independent Nonadiabatic Geometric Quantum Gates
    Liang, Yan
    Shen, Pu
    Ji, Li-Na
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2023, 19 (02)
  • [10] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Carlo Cafaro
    Stefano Mancini
    Advances in Applied Clifford Algebras, 2011, 21 : 493 - 519