Blood lactate accumulation decreases during the slow component of oxygen uptake without a decrease in muscular efficiency

被引:0
作者
J.M. O’Connell
J.M. Weir
B.R. MacIntosh
机构
[1] University of Calgary,Faculty of Kinesiology, Human Performance Laboratory
来源
Pflügers Archiv - European Journal of Physiology | 2017年 / 469卷
关键词
Oxygen uptake kinetics; Exercise metabolism; Anaerobic energy; Heavy exercise; Severe exercise;
D O I
暂无
中图分类号
学科分类号
摘要
Pulmonary oxygen uptake (V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document}) slowly increases during exercise above the anaerobic threshold, and this increase is called the slow component of V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document}. The mechanism of the increase in V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} is assumed to be due to increasing energy cost associated with increasingly inefficient muscle contraction. We hypothesized that the increase in V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} would be accompanied by a constant or increasing rate of accumulation of blood lactate, indicating sustained anaerobic metabolism while V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} increased. Ten male subjects performed cycle ergometry for 3, 6, and 9 min at a power output representing 60% of the difference between lactate threshold and maximal V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} while V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} and blood lactate accumulation were measured. Blood lactate accumulation decreased over time, providing the energy equivalent of (mean ± SD) 1586 ± 265, 855 ± 287, and 431 ± 392 ml of V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} during 0–3, 3–6, and 6–9 min of exercise, respectively. As duration progressed, V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} supplied 86.3 ± 2.0, 93.6 ± 1.9, and 96.8 ± 2.9% of total energy from 0 to 3, 3 to 6, and 6 to 9 min, respectively, while anaerobic contribution decreased. There was no change in total energy cost after 3 min, except that required by ventilatory muscles for the progressive increase in ventilation. The slow component of V̇O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{\mathrm{V}}\mathrm{O}}_2 $$\end{document} is accompanied by decreasing anaerobic energy contribution beyond 3 min during heavy exercise.
引用
收藏
页码:1257 / 1265
页数:8
相关论文
共 130 条
[1]  
Barstow TJ(1996)Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise J Appl Physiol 81 1642-1650
[2]  
Jones AM(2001)A comparison of modelling techniques used to characterize oxygen uptake kinetics during the on-transient of exercise Exp Physiol 86 667-676
[3]  
Nguyen PH(2013)Energy system contributions during incremental exercise test J Sports Sci Med 12 454-460
[4]  
Casaburi R(2014)Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension J Physiol 592 5287-5300
[5]  
Bell C(2004)Muscle glycogen depletion alters oxygen uptake kinetics during heavy exercise Med Sci Sports Exerc 36 965-972
[6]  
Paterson DH(1993)Relationship of oxygen consumption and cardiac output to work of breathing Med Sci Sports Exerc 25 335-340
[7]  
Kowalchuk JM(1981)Energetics of muscular exercise Rev Physiol Biochem and Pharm 89 143-222
[8]  
Padilla J(1999)The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts Resp Physiol 118 103-115
[9]  
Cunningham DA(1996)The slow component of oxygen uptake in humans Exerc Sport Sci Rev 24 35-70
[10]  
Bertuzzi R(1978)Efficiency of anaerobic work J Appl Physiol 44 564-570