On the Solvability of Boundary Value Problems for the Inhomogeneous Schrödinger Equation on Model Riemannian Manifolds

被引:0
作者
A. Losev
E. Mazepa
机构
[1] Institute of Mathematics and Information Technologies,
[2] Volgograd State University,undefined
来源
Lobachevskii Journal of Mathematics | 2022年 / 43卷
关键词
Dirichlet problem; nonhomogeneous elliptic equations; model Riemannian manifold; asymptotic behavior of the solutions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:642 / 652
页数:10
相关论文
共 26 条
  • [1] Ahlfors L. V.(1935)Sur le type d’une surface de Riemann C. R. Acad. Sci. Paris 201 30-32
  • [2] Nevanlina R.(1940)“Ein Satz über offenen Riemannsche Flächen,” Ann. Acad. Sci. Fenn Part A 54 1-18
  • [3] Grigor’yan P.(1999)Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds Bull. Am. Math. Soc. 36 135-249
  • [4] Cheng S. Y.(1975)Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 28 333-354
  • [5] Yau S. T.(1985)On the existance of positive fundamental solution of the Laplace equation on Riemannian manifolds Mat. Sb. 128 354-363
  • [6] Grigor’yan A.(1987)Negative curved manifolds, elliptic operators, and the Martin boundary Ann. Math. 125 495-536
  • [7] Ancona A.(2002)Boundary value problems for stationary Schrödinger equation on Riemannian manifolds Sib. Math. J. 43 591-599
  • [8] Mazepa E. A.(1983)The Dirichlet problem at infinity for manifolds with negative curvature J. Differ. Geom. 18 701-722
  • [9] Anderson M. T.(1983)The Dirichlet problem at infinity for a negatively curved manifolds J. Differ. Geom. 18 723-732
  • [10] Sullivan D.(1983)The Dirichlet problem at infinity for nonpositively curved manifolds Commun. Anal. Geom. 1 101-112