Teaching–learning guided salp swarm algorithm for global optimization tasks and feature selection

被引:0
|
作者
Jun Li
Hao Ren
Huiling Chen
ChenYang Li
机构
[1] Wenzhou University,Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province
来源
Soft Computing | 2023年 / 27卷
关键词
Salp swarm algorithm; Teaching–learning-based optimization; Engineering design; Feature selection;
D O I
暂无
中图分类号
学科分类号
摘要
The basic salp swarm algorithm (SSA) is a novel nature-inspired swarm intelligence optimization algorithm based on the foraging behavior of salp individuals in the deep sea. Since its development, the salp swarm algorithm has attracted widespread interest from scholars both at home and abroad for solving complex real-world practical problems. With continuous research, the SSA algorithm has revealed some shortcomings such as slow convergence speed and low accuracy. To enhance the optimization capability of the algorithm, in this paper, we propose an improved hybrid algorithm called TLSSA based on two phases of the teaching–learning-based optimization method: the teaching phase and the learner phase. In the teaching phase, students' ability is improved by updating the difference between the teacher and the class average level, which helps to improve the overall learning ability of the salp population, resulting in higher quality solutions. In the learning phase, by simulating the discussion, statement, and communication between students, the average level of the individual is improved, and the global search speed of the algorithm is accelerated. To verify the effectiveness and competitiveness of the proposed method, it is first tested on 30 IEEE CEC 2017 benchmark functions. The test results demonstrate that the proposed TLSSA method obtains better overall performance compared to 8 mainstream meta-heuristics and 8 advanced algorithms. After that, we applied the proposed method to solve two classical real-world engineering design problems and feature selection. Again, the experimental results show that our method has significant advantages over the traditional methods in solving these practical problems. The remarkable performance of our proposed improved TLSSA algorithm in solving theoretical and practical complex optimization problems also provides potential possibilities for applying more intelligent optimization algorithms to solve complex optimization problems in real-life situations in the future.
引用
收藏
页码:17887 / 17908
页数:21
相关论文
共 50 条
  • [1] Teaching-learning guided salp swarm algorithm for global optimization tasks and feature selection
    Li, Jun
    Ren, Hao
    Chen, Huiling
    Li, ChenYang
    SOFT COMPUTING, 2023, 27 (23) : 17887 - 17908
  • [2] A novel chaotic salp swarm algorithm for global optimization and feature selection
    Sayed, Gehad Ismail
    Khoriba, Ghada
    Haggag, Mohamed H.
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3462 - 3481
  • [3] A novel chaotic salp swarm algorithm for global optimization and feature selection
    Gehad Ismail Sayed
    Ghada Khoriba
    Mohamed H. Haggag
    Applied Intelligence, 2018, 48 : 3462 - 3481
  • [4] Improved salp swarm algorithm based on particle swarm optimization for feature selection
    Ibrahim, Rehab Ali
    Ewees, Ahmed A.
    Oliva, Diego
    Abd Elaziz, Mohamed
    Lu, Songfeng
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (08) : 3155 - 3169
  • [5] Improved salp swarm algorithm based on particle swarm optimization for feature selection
    Rehab Ali Ibrahim
    Ahmed A. Ewees
    Diego Oliva
    Mohamed Abd Elaziz
    Songfeng Lu
    Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 3155 - 3169
  • [6] VIGILANT SALP SWARM ALGORITHM FOR FEATURE SELECTION
    Arunekumar, N. B.
    Joseph, K. Suresh
    Viswanath, J.
    Anbarasi, A.
    Padmapriya, N.
    COMPUTING AND INFORMATICS, 2023, 42 (04) : 805 - 833
  • [7] Improved salp swarm algorithm for feature selection
    Hegazy, Ah. E.
    Makhlouf, M. A.
    El-Tawel, Gh. S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (03) : 335 - 344
  • [8] Dynamic Salp swarm algorithm for feature selection
    Tubishat, Mohammad
    Ja'afar, Salinah
    Alswaitti, Mohammed
    Mirjalili, Seyedali
    Idris, Norisma
    Ismail, Maizatul Akmar
    Omar, Mardian Shah
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [9] A hybrid model using teaching-learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography
    Thawkar, Shankar
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (09) : 8793 - 8808
  • [10] A hybrid model using teaching–learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography
    Shankar Thawkar
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 8793 - 8808