Multi-label feature ranking with ensemble methods

被引:0
作者
Matej Petković
Sašo Džeroski
Dragi Kocev
机构
[1] Jožef Stefan Institute,
[2] Jožef Stefan International Postgraduate School,undefined
来源
Machine Learning | 2020年 / 109卷
关键词
Feature ranking; Multi-label classification; Ensemble-based methods; Predictive clustering trees;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose three ensemble-based feature ranking scores for multi-label classification (MLC), which is a generalisation of multi-class classification where the classes are not mutually exclusive. Each of the scores (Symbolic, Genie3 and Random forest) can be computed from three different ensembles of predictive clustering trees: Bagging, Random forest and Extra trees. We extensively evaluate the proposed scores on 24 benchmark MLC problems, using 15 standard MLC evaluation measures. We determine the ranking quality saturation points in terms of the ensemble sizes, for each ranking-ensemble pair, and show that quality rankings can be computed really efficiently (typically 10 or 50 trees suffice). We also show that the proposed feature rankings are relevant and determine the most appropriate ensemble method for every feature ranking score. We empirically prove that the proposed feature ranking scores outperform current state-of-the-art methods in the quality of the rankings (for the majority of the evaluation measures), and in time efficiency. Finally, we determine the best performing feature ranking scores. Taking into account the quality of the rankings first and—in the case of ties—time efficiency, we identify the Genie3 feature ranking score as the optimal one.
引用
收藏
页码:2141 / 2159
页数:18
相关论文
共 50 条
  • [31] Dynamic ensemble pruning based on multi-label classification
    Markatopoulou, Fotini
    Tsoumakas, Grigorios
    Vlahavas, Ioannis
    NEUROCOMPUTING, 2015, 150 : 501 - 512
  • [32] MULTI-LABEL RANKING METHOD BASED ON POSITIVE CLASS CORRELATIONS
    Alazaidah, Raed
    Ahmad, Farzana Kabir
    Mohsin, Mohamad Farhan Mohamad
    AlZoubi, Wael Ahmad
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2020, 6 (04): : 377 - 391
  • [33] Label correlations-based multi-label feature selection with label enhancement
    Qian, Wenbin
    Xiong, Yinsong
    Ding, Weiping
    Huang, Jintao
    Vong, Chi-Man
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [34] Feature distribution-based label correlation in multi-label classification
    Xiaoya Che
    Degang Chen
    Jusheng Mi
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1705 - 1719
  • [35] Feature distribution-based label correlation in multi-label classification
    Che, Xiaoya
    Chen, Degang
    Mi, Jusheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (06) : 1705 - 1719
  • [36] Dynamic feature weighting for multi-label classification problems
    Maryam Dialameh
    Ali Hamzeh
    Progress in Artificial Intelligence, 2021, 10 : 283 - 295
  • [37] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [38] Ensemble multi-label classification using closed frequent labelsets and label taxonomies
    Ferrandin, Mauri
    Cerri, Ricardo
    APPLIED SOFT COMPUTING, 2025, 171
  • [39] Dynamic feature weighting for multi-label classification problems
    Dialameh, Maryam
    Hamzeh, Ali
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (03) : 283 - 295
  • [40] Multi-Label Feature Selection using Correlation Information
    Braytee, Ali
    Liu, Wei
    Catchpoole, Daniel R.
    Kennedy, Paul J.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1649 - 1656