Regularization of p-adic string amplitudes, and multivariate local zeta functions

被引:0
|
作者
Miriam Bocardo-Gaspar
H. García-Compeán
W. A. Zúñiga-Galindo
机构
[1] Unidad Querétaro,Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Matemáticas
[2] Centro de Investigacion y de Estudios Avanzados del I.P.N.,Departamento de Física
来源
关键词
-adic string theory; String amplitudes; Regularization; Local zeta functions; Primary 81E99; 11S40; Secondary 81E30; 46S10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the p-adic Koba–Nielsen-type string amplitudes are bona fide integrals. We attach to these amplitudes Igusa-type integrals depending on several complex parameters and show that these integrals admit meromorphic continuations as rational functions. Then, we use these functions to regularize the Koba–Nielsen amplitudes. As far as we know, there is no similar result for the Archimedean Koba–Nielsen amplitudes. We also discuss the existence of divergencies and the connections with multivariate Igusa’s local zeta functions.
引用
收藏
页码:1167 / 1204
页数:37
相关论文
共 50 条
  • [21] Pseudo-differential equations connected with p-adic forms and local zeta functions
    Zuniga-Galindo, WA
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) : 73 - 86
  • [22] p-adic Mellin amplitudes
    Jepsen, Christian Baadsgaard
    Parikh, Sarthak
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [23] Euclidean quantum field formulation of p-adic open string amplitudes
    Fuquen-Tibata, A. R.
    Garcia-Compean, H.
    Zuniga-Galindo, W. A.
    NUCLEAR PHYSICS B, 2022, 975
  • [24] p-adic Mellin amplitudes
    Christian Baadsgaard Jepsen
    Sarthak Parikh
    Journal of High Energy Physics, 2019
  • [25] On the smallest poles of Igusa's p-adic zeta functions
    Segers, D
    MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) : 429 - 455
  • [26] Local Zeta Functions and Koba-Nielsen String Amplitudes
    Bocardo-Gaspar, Miriam
    Garcia-Compean, Hugo
    Lopez, Edgar Y.
    Zuniga-Galindo, Wilson A.
    SYMMETRY-BASEL, 2021, 13 (06):
  • [27] On the smallest poles of Igusa's p-adic zeta functions
    Dirk Segers
    Mathematische Zeitschrift, 2006, 252 : 429 - 455
  • [28] RESIDUE AT S = 1 OF P-ADIC ZETA-FUNCTIONS
    COLMEZ, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (01): : 5 - 8
  • [29] On p-adic Hurwitz-type Euler zeta functions
    Kim, Min-Soo
    Hu, Su
    JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2977 - 3015
  • [30] Raabe's formula for p-adic gamma and zeta functions
    Cohen, Henri
    Friedman, Eduardo
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (01) : 363 - 376