Hölder Continuity of the Solution Set of the Ky Fan Inequality

被引:0
作者
X. B. Li
X. J. Long
J. Zeng
机构
[1] Chongqing Jiaotong University,College of Sciences
[2] Chongqing Technology and Business University,College of Mathematics and Statistics
来源
Journal of Optimization Theory and Applications | 2013年 / 158卷
关键词
Ky Fan Inequality; Perturbed solution set; Uniqueness; Hölder continuity; Strong convexity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the Hölder continuity of the perturbed solution set to a convex Ky Fan Inequality. We establish some new sufficient conditions for the uniqueness and Hölder continuity of the solution set of the Ky Fan Inequality both in the given space and in its image space by perturbing the objective function and the feasible set. Our methods and results are different from the corresponding ones in the literature. Some examples are given to analyze the obtained results.
引用
收藏
页码:397 / 409
页数:12
相关论文
共 47 条
  • [1] Brézis H.(1972)A remark on Ky Fan’s minimax principle Boll. Unione Mat. Ital. VI 129-132
  • [2] Nirenberg L.(1999)An existence result for the generalized vector equilibrium problem Appl. Math. Lett. 12 53-56
  • [3] Stampacchia G.(1994)From optimization and variational inequalities to equilibrium problems Math. Stud. 63 123-145
  • [4] Ansari Q.H.(2010)Existences of solutions for generalized vector quasiequilibrium problems Optim. Lett. 4 17-28
  • [5] Yao J.C.(2004)Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems J. Math. Anal. Appl. 294 699-711
  • [6] Blum E.(2003)A note on stability for parametric equilibrium problems Oper. Res. Lett. 31 445-450
  • [7] Oettli W.(2006)Sensitivity for parametric vector equilibria Optimization 55 221-230
  • [8] Li X.B.(2009)Solution semicontinuity of parametric generalized vector equilibrium problems J. Glob. Optim. 45 309-318
  • [9] Li S.J.(2011)Continuity of approximate solution mappings for parametric equilibrium problems J. Glob. Optim. 51 541-548
  • [10] Anh L.Q.(1995)Hölder continuity of solutions to parametric variational inequalities Appl. Math. Optim. 31 245-255