Giant Seebeck effect across the field-induced metal-insulator transition of InAs

被引:0
作者
Alexandre Jaoui
Gabriel Seyfarth
Carl Willem Rischau
Steffen Wiedmann
Siham Benhabib
Cyril Proust
Kamran Behnia
Benoît Fauqué
机构
[1] USR 3573 CNRS,JEIP
[2] Collège de France,Laboratoire de Physique et Etude des Matériaux (CNRS/UPMC)
[3] PSL Research University,Laboratoire National des Champs Magnétiques Intenses (LNCMI
[4] Ecole Supérieure de Physique et de Chimie Industrielles,EMFL)
[5] CNRS,High Field Magnet Laboratory (HFML
[6] UGA,EMFL)
[7] UPS,Radboud University
[8] INSA,undefined
[9] Université Grenoble-Alpes,undefined
[10] Radboud University,undefined
[11] Institute for Molecules and Materials,undefined
来源
npj Quantum Materials | / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lightly doped III–V semiconductor InAs is a dilute metal, which can be pushed beyond its extreme quantum limit upon the application of a modest magnetic field. In this regime, a Mott-Anderson metal–insulator transition, triggered by the magnetic field, leads to a depletion of carrier concentration by more than one order of magnitude. Here, we show that this transition is accompanied by a 200-fold enhancement of the Seebeck coefficient, which becomes as large as 11.3 mV K−1≈130kBe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 130\frac{{k}_{B}}{e}$$\end{document} at T = 8 K and B = 29 T. We find that the magnitude of this signal depends on sample dimensions and conclude that it is caused by phonon drag, resulting from a large difference between the scattering time of phonons (which are almost ballistic) and electrons (which are almost localized in the insulating state). Our results reveal a path to distinguish between possible sources of large thermoelectric response in other low-density systems pushed beyond the quantum limit.
引用
收藏
相关论文
共 99 条
[1]  
Behnia K(2007)Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit Phys. Rev. Lett. 98 166602-29
[2]  
Méasson M-A(2010)Nernst effect and dimensionality in the quantum limit Nat. Phys. 6 26-10574
[3]  
Kopelevich Y(2011)Angle-resolved Landau spectrum of electrons and holes in bismuth Phys. Rev. B 84 115137-1774
[4]  
Zhu Z(1996)Magnetothermoelectric properties of the degenerate semiconductor HgSe: Fe Phys. Rev. B 54 10565-7133
[5]  
Yang H(2013)Observation of a thermoelectric Hall plateau in the extreme quantum limit Nat. Commun. 4 1767-1187
[6]  
Fauqué B(2020)Phonon drag in Nat. Commun. 11 035133-1431
[7]  
Kopelevich Y(1964)-type InSb Phys. Rev. 136 6167-3299
[8]  
Behnia K(2013)Magnetothermoelectric properties of Bi Phys. Rev. B 87 7122-844
[9]  
Zhu Z(2020)Se Nat. Comm. 11 1163-2308
[10]  
Fauqué B(1986)Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal Phys. Rev. B 33 1418-1846