N-fold Backlund transformation for deformed nonlinear Schrödinger equation

被引:0
|
作者
A. Roy Chowdhury
Swapan Kr. Pal
机构
[1] Jadavpur University,High Energy Physics Division, Department of Physics
来源
International Journal of Theoretical Physics | 1997年 / 36卷
关键词
Soliton; Trivial Solution; Darboux Transformation; Nonlinear SchrOdinger Equation; Backlund Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate theN-fold Backlund transformation for the deformed nonlinear Schrödinger equation following the idea of Neugebaueret al. Starting with trivial solutions, we construct explicit one-soliton solutions in two distinct cases of deformation from our transformation forN=1. These solitons have space-time-dependent amplitude and velocity.
引用
收藏
页码:1021 / 1031
页数:10
相关论文
共 50 条
  • [31] The n-fold Darboux transformation for the Kundu-Eckhaus equation and dynamics of the smooth positon solutions
    Qiu, Deqin
    Cheng, Wenguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [32] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [33] The Hamiltonian dynamics of the soliton of the discrete nonlinear Schrödinger equation
    A. M. Kosevich
    Journal of Experimental and Theoretical Physics, 2001, 92 : 866 - 870
  • [34] Adaptive Absorbing Boundary Layer for the Nonlinear Schrödinger Equation
    Stimming, Hans Peter
    Wen, Xin
    Mauser, Norbert J.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (03) : 797 - 812
  • [35] Nonlinear Coherent States and Ehrenfest Time for Schrödinger Equation
    Rémi Carles
    Clotilde Fermanian-Kammerer
    Communications in Mathematical Physics, 2011, 301 : 443 - 472
  • [36] Rogue Wave with a Controllable Center of Nonlinear Schrdinger Equation
    王小春
    贺劲松
    李翊神
    CommunicationsinTheoreticalPhysics, 2011, 56 (10) : 631 - 637
  • [37] Investigating the exact integrability of the multiwave nonlinear Schrödinger equation
    S. V. Belyutin
    Theoretical and Mathematical Physics, 1997, 110 : 190 - 198
  • [38] Recent advances in the numerical solution of the Nonlinear Schrödinger Equation
    Barletti, Luigi
    Brugnano, Luigi
    Gurioli, Gianmarco
    Iavernaro, Felice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 445
  • [39] Breathers in a damped-driven nonlinear Schrödinger equation
    N. V. Alexeeva
    E. V. Zemlyanaya
    Theoretical and Mathematical Physics, 2011, 168 : 858 - 864
  • [40] Waves described by higher approximations of the nonlinear schrödinger equation
    Gromov E.M.
    Talanov V.I.
    Radiophysics and Quantum Electronics, 1998, 41 (2) : 143 - 157