Branch-and-cut approaches for chance-constrained formulations of reliable network design problems

被引:23
作者
Song Y. [1 ]
Luedtke J.R. [1 ]
机构
[1] Department of Industrial and Systems Engineering, University of Wisconsin-Madison
基金
美国国家科学基金会;
关键词
Chance constraints; Integer programming; Reliable network design;
D O I
10.1007/s12532-013-0058-3
中图分类号
学科分类号
摘要
We study solution approaches for the design of reliably connected networks. Specifically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satisfied is at least 1 - epsilon 1 - Ïμ, where epsilon Ïμ is a risk tolerance. We consider two types of connectivity requirements. We first study the problem of requiring an s s - t t path to exist with high probability in a directed graph. Then we consider undirected graphs, where we require the graph to be fully connected with high probability. We model each problem as a stochastic integer program with a joint chance constraint, and present two formulations that can be solved by a branch-and-cut algorithm. The first formulation uses binary variables to represent whether or not the connectivity requirement is satisfied in each scenario of arc failures and is based on inequalities derived from graph cuts in individual scenarios. We derive additional valid inequalities for this formulation and study their facet-inducing properties. The second formulation is based on probabilistic graph cuts, an extension of graph cuts to graphs with random arc failures. Inequalities corresponding to probabilistic graph cuts are sufficient to define the set of feasible solutions and violated inequalities in this class can be found efficiently at integer solutions, allowing this formulation to be solved by a branch-and-cut algorithm. Computational results demonstrate that the approaches can effectively solve instances on large graphs with many failure scenarios. In addition, we demonstrate that, by varying the risk tolerance, our model yields a rich set of solutions on the efficient frontier of cost and reliability. © 2013 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.
引用
收藏
页码:397 / 432
页数:35
相关论文
共 44 条
[1]  
Achterberg T., Constraint Integer Programming, (2007)
[2]  
Ahuja R., Magnanti T., Orlin J., Network Flows, (1993)
[3]  
Andreas A.K., Smith J.C., Mathematical programming algorithms for two-path routing problems with reliability considerations, INFORMS J. Comput., 20, pp. 553-564, (2008)
[4]  
Andreello G., Caprara A., Fischetti M., Embedding cuts in a branch and cut framework: A computational study with 0,1/2-Cuts, INFORMS J. Comput., 19, 2, pp. 229-238, (2007)
[5]  
Aneja Y., An integer linear programming approach to the steiner problem in graphs, Networks, 10, pp. 167-178, (1980)
[6]  
Atamturk A., Nemhauser G., Savelsbergh M., The mixed vertex packing problem, Math. Program., 89, pp. 35-53, (2000)
[7]  
Baiou M., Barahona F., Mahjoub A., Separation of partition inequalities, Math. Oper. Res., 25, pp. 243-254, (2000)
[8]  
Beasley J., OR-Library: Distributing test problems by electronic mail, J. Oper. Res. Soc., 41, pp. 1069-1072, (1990)
[9]  
Beraldi P., Bruni M., An exact approach for solving integer problems under probabilistic constraints with random technology matrix, Ann. Oper. Res., 177, pp. 127-137, (2010)
[10]  
Beraldi P., Bruni M.E., Guerriero F., Network reliablity design via joint probabilistic contraints, IMA J. Manag. Math., 21, pp. 213-226, (2010)