Chaotic inflation in no-scale supergravity with string inspired moduli stabilization

被引:0
作者
Tianjun Li
Zhijin Li
Dimitri V. Nanopoulos
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics
[2] University of Electronic Science and Technology of China,School of Physical Electronics
[3] Texas A&M University,George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy
[4] Houston Advanced Research Center (HARC),Astroparticle Physics Group
[5] Academy of Athens,Division of Natural Sciences
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Heterotic String; Shift Symmetry; Modulus Stabilization; Gauge Kinetic Function; Anomaly Cancelation Condition;
D O I
暂无
中图分类号
学科分类号
摘要
The simple chaotic inflation is highly consistent with the BICEP2 experiment, and no-scale supergravity can be realized naturally in various string compactifications. Thus, we construct a chaotic inflation model in no-scale supergravity inspired from Type IIB string compactification with an anomalous U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_X$$\end{document} gauged symmetry. We introduce two moduli T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document} and T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} which transform non-trivially under U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_X$$\end{document}, and some pairs of fundamental quarks charged under the SU(N)×U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(N)\times U(1)_X$$\end{document} gauge group. The non-trivial transformations of moduli under U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_X$$\end{document} lead to a moduli-dependent Fayet–Iliopoulos (FI) term. The modulus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_2$$\end{document} and the real component of T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document} are stabilized by the non-perturbative effect from quark condensation and the U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_X$$\end{document} D-term. In particular, the stabilization from the anomalous U(1)X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_X$$\end{document} D-term with moduli-dependent FI term is crucial for inflation since it gives heavy mass to the real component of the modulus T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document} while keeping its axionic part light. Choosing the proper parameters, we obtain a global Minkowski vacuum where the imaginary part of T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document} has a quadratic potential for chaotic inflation.
引用
收藏
相关论文
共 145 条
[1]  
Linde AD(1983)undefined Phys. Lett. B 129 177-308
[2]  
Starobinsky AA(1980)undefined Phys. Lett. B 91 99-undefined
[3]  
Starobinsky AA(1983)undefined Sov. Astron. Lett. 9 302-undefined
[4]  
Cremmer E(1983)undefined Phys. Lett. B 133 61-undefined
[5]  
Ferrara S(1984)undefined Phys. Lett. B 134 429-undefined
[6]  
Kounnas C(1984)undefined Nucl. Phys. B 241 406-undefined
[7]  
Nanopoulos DV(1984)undefined Nucl. Phys. B 247 373-undefined
[8]  
Ellis JR(1987)undefined Phys. Rep. 145 1-undefined
[9]  
Lahanas AB(1985)undefined Phys. Lett. B 155 151-undefined
[10]  
Nanopoulos DV(2013)undefined JCAP 1310 009-undefined