Augmentation quotients for Burnside rings of some finite p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-groups

被引:0
作者
SHAN CHANG
机构
[1] Hefei University of Technology,School of Mathematics
关键词
Finite ; -group; Burnside ring; augmentation ideal; augmentation quotient; 16S34; 20C05;
D O I
10.1007/s12044-018-0444-x
中图分类号
学科分类号
摘要
Let G be a finite group, Ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (G)$$\end{document} be its Burnside ring and Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} the augmentation ideal of Ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (G)$$\end{document}. Denote by Δn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^n(G)$$\end{document} and Qn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n(G)$$\end{document} the n-th power of Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} and the n-th consecutive quotient group Δn(G)/Δn+1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^n(G)/\Delta ^{n+1}(G)$$\end{document}, respectively. This paper provides an explicit Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}-basis for Δn(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^n({\mathcal {H}})$$\end{document} and determine the isomorphism class of Qn(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n({\mathcal {H}})$$\end{document} for each positive integer n, where H=⟨g,h|gpm=hp=1,h-1gh=gpm-1+1⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}=\langle g,h |\, g^{p^m}=h^p=1, h^{-1}gh=g^{p^{m-1}+1}\rangle $$\end{document}, p is an odd prime.
引用
收藏
相关论文
共 17 条
[1]  
Chang S(2011)A basis for augmentation quotients of finite abelian groups J. Algebra 327 466-488
[2]  
Tang G(2012)Augmentation quotients for complex representation rings of dihedral groups Front. Math. China 7 1-18
[3]  
Chang S(2014)Augmentation quotients for complex representation rings of point groups J. Anhui Univ. Nat. Sci. 38 13-19
[4]  
Chen H(2016)Augmentation quotients for complex representation rings of generalized quaternion groups Chin. Ann. Math. Ser. B 37 571-584
[5]  
Tang G(2016)Augmentation quotients for Burnside rings of generalized dihedral groups Czech. Math. J. 66(4) 1165-1175
[6]  
Chang S(2001)A basis for powers of the augmentation ideal Algebra Colloq. 8 121-128
[7]  
Chang S(2016)On the consecutive quotients for Burnside ring of some nonabelian 2-groups J. Guangxi Teach. Edu. Univ. Nat. Sci. 33 1-7
[8]  
Chang S(2001)Presenting powers of augmentation ideals of elementary p-groups K-Theory 23 31-39
[9]  
Parmenter MM(2003)On a problem of Karpilovsky Algebra Colloq. 10 11-16
[10]  
Tang G(2007)Structure of augmentation quotients of finite homocyclic abelian groups Sci. China Ser. A. 50 1280-1288