The Jumping Operator on Invariant Subspaces in Spaces of Analytic Functions

被引:0
作者
Shuaibing Luo
机构
[1] Hunan University,College of Mathematics and Econometrics
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Dirichlet space; Bergman space; Invariant subspace; Jumping operator; 47B10; 46E22; 47A15;
D O I
暂无
中图分类号
学科分类号
摘要
Let D denote the Dirichlet space of holomorphic functions f in the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} with finite Dirichlet integral, ∫D|f′|2dA<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\mathbb {D}|f'|^2 dA < \infty $$\end{document}. For an Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_z$$\end{document}-invariant subspace M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of D we study the jumping operator PMMzPM⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\mathcal {M}M_z P_\mathcal {M}^{\perp }$$\end{document} from the orthogonal complement of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. We show that the jumping operator is in Schatten p-class for p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p > 1$$\end{document} and we obtain that for a zero-based invariant subspace M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of D, the rank of the jumping operator is finite if and only if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is of finite codimension. We also prove that there are invariant subspaces of D which have infinite codimension such that the corresponding jumping operators have finite rank. Furthermore, we show that some similar results hold in the setting of the Bergman space.
引用
收藏
页码:3501 / 3519
页数:18
相关论文
共 31 条
  • [1] Aleman A(2002)The majorization function and the index of invariant subspaces in the Bergman spaces J. Anal. Math. 86 139-182
  • [2] Richter S(1969)Subalgebras of Acta Math. 123 141-224
  • [3] Sundberg C(2000)-algebras J. Reine Angew. Math. 522 173-236
  • [4] Arveson WB(2005)The curvature invariant of a Hilbert module over J. Oper. Theory 54 101-117
  • [5] Arveson WB(2004)-summable commutators in dimension J. Oper. Theory 51 181-200
  • [6] Arveson WB(2009)Reproducing kernels and invariant subspaces of the Bergman shift Adv. Math. 222 2196-2214
  • [7] Chailos G(2004)On the Brown–Shields conjecture for cyclicity in the Dirichlet space J. Reine Angew. Math. 573 181-209
  • [8] El-Fallah O(2008)Defect operators for submodules of Math. Ann. 340 907-934
  • [9] Kellay K(1968)Essentially normal Hilbert modules and K-homology Mich. Math. J. 15 215-223
  • [10] Ransford T(1993)Irreducible operators J. Funct. Anal. 116 441-448