New bounds for perturbation of the orthogonal projection

被引:0
|
作者
Bingxiang Li
Wen Li
Lubin Cui
机构
[1] South China Normal University,School of Mathematical Sciences
来源
Calcolo | 2013年 / 50卷
关键词
Singular value decomposition; Orthogonal projection; Additive perturbation; Multiplicative perturbation; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the singular value decomposition, we obtain both additive and multiplicative perturbation bounds for the orthogonal projection, which improve some existing results. Furthermore, the Q-norm bounds for additive and multiplicative perturbations of the orthogonal projection are also given.
引用
收藏
页码:69 / 78
页数:9
相关论文
共 50 条
  • [1] New bounds for perturbation of the orthogonal projection
    Li, Bingxiang
    Li, Wen
    Cui, Lubin
    CALCOLO, 2013, 50 (01) : 69 - 78
  • [2] New multiplicative perturbation bounds on orthogonal projection
    Liu, Zengfeng
    Meng, Lingsheng
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (10) : 1657 - 1662
  • [3] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Wen Li
    Yanmei Chen
    Seakweng Vong
    Qilun Luo
    Numerical Algorithms, 2018, 79 : 657 - 677
  • [4] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Li, Wen
    Chen, Yanmei
    Vong, Seakweng
    Luo, Qilun
    NUMERICAL ALGORITHMS, 2018, 79 (02) : 657 - 677
  • [5] On perturbation bounds for orthogonal projections
    Yan Mei Chen
    Xiao Shan Chen
    Wen Li
    Numerical Algorithms, 2016, 73 : 433 - 444
  • [6] On perturbation bounds for orthogonal projections
    Chen, Yan Mei
    Chen, Xiao Shan
    Li, Wen
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 433 - 444
  • [7] On the perturbation of an L2-orthogonal projection
    Xu, Xuefeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368 (368)
  • [8] Doubling the rate: improved error bounds for orthogonal projection with application to interpolation
    Sloan, Ian H.
    Kaarnioja, Vesa
    BIT NUMERICAL MATHEMATICS, 2025, 65 (01)
  • [9] New perturbation bounds for unitary polar factors
    Li, W
    Sun, WW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 362 - 372
  • [10] New multiplicative perturbation bounds for the generalized polar decomposition
    Liu, Na
    Luo, Wei
    Xu, Qingxiang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 259 - 271