Unstable extremal surfaces of the “Shiffman functional” spanning rectifiable boundary curves

被引:0
作者
Ruben Jakob
机构
[1] Mathematisches Institut der ETH zürich,
来源
Calculus of Variations and Partial Differential Equations | 2007年 / 28卷
关键词
Jordan Curve; Isoperimetric Inequality; Mountain Pass; Extremal Surface; Mountain Pass Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a sufficient condition for the existence of extremal surfaces of a parametric functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document} with a dominant area term, which do not furnish global minima of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document} within the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}^*(\Gamma )$$\end{document} of H1,2-surfaces spanning an arbitrary closed rectifiable Jordan curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma\subset \mathbb{R}^3$$\end{document} that merely has to satisfy a chord-arc condition. The proof is based on the “mountain pass result” of (Jakob in Calc Var 21:401–427, 2004) which yields an unstable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document}-extremal surface bounded by an arbitrary simple closed polygon and Heinz’ ”approximation method” in (Arch Rat Mech Anal 38:257–267, 1970). Hence, we give a precise proof of a partial result of the mountain pass theorem claimed by Shiffman in (Ann Math 45:543–576, 1944) who only outlined a very sketchy and partially incorrect proof.
引用
收藏
页码:383 / 409
页数:26
相关论文
共 8 条
[1]  
Heinz E.(1970)On surfaces of constant mean curvature with polygonal boundaries Arch. Ration Mech. Anal. 36 335-347
[2]  
Heinz E.(1970)Unstable surfaces of constant mean curvature Arch. Ration Mech. Anal. 38 257-267
[3]  
Hildebrandt S.(1969)Boundary behavior of minimal surfaces Arch. Ration. Mech. Anal. 35 47-82
[4]  
Jakob R.(2004)Unstable extremal surfaces of the “Shiffman-functional” Calc. Var. 21 401-427
[5]  
Jakob R.(2003)Instabile Extremalen des Shiffman-Funktionals Bonner Math. Schriften 362 1-103
[6]  
Morse M.(1941)The continuity of the area of harmonic surfaces as a function of the boundary representations Am. J. Math. 63 825-838
[7]  
Tompkins C.(1944)Instability for double integral problems in the calculus of variations Ann. Math. 45 543-576
[8]  
Shiffman M.(undefined)undefined undefined undefined undefined-undefined