Infinitesimal Variations of Submanifolds

被引:0
作者
Marcos Dajczer
Miguel Ibieta Jimenez
机构
[1] IMPA – Estrada Dona Castorina,Instituto de Ciências Matemáticas e de Computação
[2] 110,undefined
[3] Universidade de São Paulo,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2021年 / 52卷
关键词
Infinitesimal variations; Fundamental equations; Fundamental theorem; 53A07; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the subject of infinitesimal variations of Euclidean submanifolds with arbitrary dimension and codimension. The main goal is to establish a Fundamental theorem for these geometric objects. Similar to the theory of isometric immersions in Euclidean space, we prove that a system of three equations for a certain pair of tensors are the integrability conditions for the differential equation that determines the infinitesimal variations. In addition, we give some rigidity results when the submanifold is intrinsically a Riemannian product of manifolds.
引用
收藏
页码:573 / 589
页数:16
相关论文
共 10 条
[1]  
Dajczer M(1990)Infinitesimal rigidity of Euclidean submanifolds Ann. Inst. Fourier 40 939-949
[2]  
Rodríguez L(2013)Isometric immersions of warped products Proc. Am. Math. Soc. 141 1795-1803
[3]  
Dajczer M(2008)Bending of surfaces III J. Math. Sci. 149 861-895
[4]  
Vlachos TH(2018)Infinitesimal bendings of complete Euclidean hypersurfaces Manuscr. Math. 157 513-527
[5]  
Ivanova-Karatopraklieva I(1980)Infinitesimal bendings of certain multidimensional surfaces Mat. Zametki 27 469-479
[6]  
Markov P(1908)Sulla deformazione infinitesima delle ipersuperficie Ann. Mat. Pura Appl. 15 329-348
[7]  
Sabitov I(undefined)undefined undefined undefined undefined-undefined
[8]  
Jimenez MI(undefined)undefined undefined undefined undefined-undefined
[9]  
Markov P(undefined)undefined undefined undefined undefined-undefined
[10]  
Sbrana U(undefined)undefined undefined undefined undefined-undefined