Algebras Generated by Toeplitz Operators on the Hardy Space over the Siegel Domain

被引:0
作者
Armando Sánchez-Nungaray
Nikolai Vasilevski
机构
[1] Universidad Veracruzana,Facultad de Matemáticas
[2] CINVESTAV,Departamento de Matemáticas
来源
Complex Analysis and Operator Theory | 2020年 / 14卷
关键词
Toeplitz operator; C*-algebra; Bergman space; Siegel domain; Primary 47B35; Secondary 47L80; 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
Following the approach of Loaiza and Vasilevski (Equ Oper Theory 92(3): 33, 2020, https://doi.org/10.1007/s00020-020-02580-x; “Operator Theory, Functional Analysis and Applications”, Oper Theory Adv Appl 28(2), 2020, to appear), we give two different representations of the Hardy space on the Siegel domain in terms of the Bergman space and terms of the direct integral of the weighted Fock spaces. Based on these representations we describe then various commutative and non-commutative C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras, which are generated by Toeplitz operators acting on the Hardy space over the Siegel domain.
引用
收藏
相关论文
共 19 条
  • [1] Bargmann V(1961)On a Hilbert space of analytic functions and an associated integral transform Commun. Pure Appl. Math. 14 187-214
  • [2] Bauer W(2015)Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation J. Reine Angew. Math. 703 225-246
  • [3] Coburn LA(2016)Uniformly continuous functions and quantization on the Fock space Bol. Soc. Mat. Mex. 22 669-677
  • [4] Bauer W(1972)Covariant and contravariant symbols of operators Math. USSR Izvestia 6 1117-1151
  • [5] Coburn LA(1987)Toeplitz operators on the segal-bargman space Trans. Am. Math. Soc. 301 813-829
  • [6] Berezin FA(1964)Algebraic properties of Toeplitz operators J. Reine Angew. Math. 213 8-102
  • [7] Berger CA(1992)Deformation estimates for the Berezin–Toeplitz quantization Commun. Math. Phys. 149 415-424
  • [8] Coburn LA(1932)Konfigurationsraum und zweite Quantelung Z. Physik 75 622-647
  • [9] Brown A(1964)Analysis on homogeneous domains Russian Math. Surv. 19 1-89
  • [10] Halmos PR(1972) spaces of generalized half-spaces Studia Math. 44 379-388