An asymptotic bound for the complexity of monotone graph properties

被引:0
|
作者
Torsten Korneffel
Eberhard Triesch
机构
[1] RWTH Aachen,Lehrstuhl II für Mathematik
来源
Combinatorica | 2010年 / 30卷
关键词
05C25; 05C99; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
We present an application of the topological approach of Kahn, Saks and Sturtevant to the evasiveness conjecture for monotone graph properties. Although they proved evasiveness for every prime power of vertices, the best asymtotic lower bound for the (decision tree) complexity c(n) known so far is ¼n2, proved in the same paper. In case that the evasiveness conjecture holds, it is ½n(n−1).We demonstrate some techniques to improve the 1/4 bound and show \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ c(n) \geqslant \tfrac{8} {{25}}n^2 - o(n^2 ) $$\end{document}.
引用
收藏
页码:735 / 743
页数:8
相关论文
共 50 条
  • [1] AN ASYMPTOTIC BOUND FOR THE COMPLEXITY OF MONOTONE GRAPH PROPERTIES
    Korneffel, Torsten
    Triesch, Eberhard
    COMBINATORICA, 2010, 30 (06) : 735 - 743
  • [2] A LOWER BOUND FOR THE COMPLEXITY OF MONOTONE GRAPH PROPERTIES
    Scheidweiler, Robert
    Triesch, Eberhard
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 257 - 265
  • [3] THE CRITICAL COMPLEXITY OF ALL (MONOTONE) BOOLEAN FUNCTIONS AND MONOTONE GRAPH PROPERTIES
    WEGENER, I
    INFORMATION AND CONTROL, 1985, 67 (1-3): : 212 - 222
  • [5] An improved lower bound on the sensitivity complexity of graph properties
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3524 - 3529
  • [6] A new bound for the complexity of a graph
    Zhang, XD
    UTILITAS MATHEMATICA, 2005, 67 : 201 - 203
  • [7] A BOUND FOR THE COMPLEXITY OF A SIMPLE GRAPH
    GRONE, R
    MERRIS, R
    DISCRETE MATHEMATICS, 1988, 69 (01) : 97 - 99
  • [8] Monotone Arithmetic Complexity of Graph Homomorphism Polynomials
    Komarath, Balagopal
    Pandey, Anurag
    Rahul, C. S.
    ALGORITHMICA, 2023, 85 (09) : 2554 - 2579
  • [9] Monotone Arithmetic Complexity of Graph Homomorphism Polynomials
    Balagopal Komarath
    Anurag Pandey
    C. S. Rahul
    Algorithmica, 2023, 85 : 2554 - 2579
  • [10] An asymptotic upper bound for graph embeddings
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Tzamos, Charalambos
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 157 - 177