Solubility of Gases in Liquids. 23: High-Precision Determination of Henry’s Law Constants of Propane Dissolved in Liquid Water from T = 278 K to T = 318 K

被引:0
作者
T. R. Rettich
Rubin Battino
Emmerich Wilhelm
机构
[1] Illinois Wesleyan University,Department of Chemistry
[2] Wright State University,Department of Chemistry
[3] University of Wien (Vienna),Institute of Materials Chemistry & Research
来源
Journal of Solution Chemistry | 2024年 / 53卷
关键词
Solubility of propane in water; Henry fugacity (Henry’s law constant); Ostwald coefficient; van ‘t Hoff analysis; Partial molar enthalpy changes on solution; Partial molar heat capacity changes on solution;
D O I
暂无
中图分类号
学科分类号
摘要
The solubility of propane (C3H8, component 2) in pure liquid water (H2O, component 1) was determined at a total pressure of about 100 kPa from about T = 278 K to T = 318 K using an analytical method characterized by an imprecision of about ± 0.1% or less. The measurements were made with a Benson-Krause-type apparatus at roughly 5 K intervals. From the experimental results, Henry’s law constants h2,1T,Pσ,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2,1} \left( {T,P_{\sigma ,1} } \right)$$\end{document}, also known as Henry fugacities, at the vapor pressure Pσ,1T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\sigma ,1} \left( T \right)$$\end{document} of water, as well as the Ostwald coefficient L2,1∞T,Pσ,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2,1}^{\infty } \left( {T,P_{{{\sigma ,}1}} } \right)$$\end{document} at infinite dilution are rigorously obtained. The temperature dependence is accounted for by a three-constant Benson-Krause equation, i.e., by fitting lnh2,1T,Pσ,1/kPa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln \left[ {{{h_{2,1} \left( {T,P_{\sigma ,1} } \right)} \mathord{\left/ {\vphantom {{h_{2,1} \left( {T,P_{\sigma ,1} } \right)}{\text {kPa}}}} \right. \kern-0pt}{\text {kPa}}}} \right]$$\end{document} to a power series in 1/T. Subsequently, the partial molar enthalpy changes on solution ΔH2∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta H_{2}^{\infty }$$\end{document} of propane in water, and the partial molar heat capacity changes on solution ΔCP,2∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta C_{P,2}^{\infty }$$\end{document}, are reported (van ‘t Hoff analysis) and compared with calorimetrically determined quantities: agreement is highly satisfactory. We believe that our new values for the Henry fugacity and the Ostwald coefficient of propane dissolved in liquid water are the most reliable ones to date.
引用
收藏
页码:28 / 42
页数:14
相关论文
共 230 条
[1]  
Battino R(1966)The solubility of gases in liquids Chem. Rev. 66 395-463
[2]  
Clever HL(1977)Low-pressure solubility of gases in liquid water Chem. Rev. 77 219-262
[3]  
Wilhelm E(1985)Precision methods for the determination of the solubility of gases in liquids CRC Crit. Rev. Analyt. Chem. 16 129-175
[4]  
Battino R(2017)How, water’s properties are encoded in its molecular structure and energies Chem. Rev. 117 12385-12414
[5]  
Wilcock RJ(1993)Habitable zones around main sequence stars Icarus 101 108-128
[6]  
Wilhelm E(2009)Origin of life on earth Sci. Am. 301 54-61
[7]  
Brini E(2015)The RNA world: molecular cooperation at the origins of life Nat. Rev. Genet. 16 7-17
[8]  
Fennell CJ(2016)The RNA world at thirty: a look back with its author J. Mol. Evol. 83 169-175
[9]  
Fernandez-Serra M(2005)Water dynamics in the hydration layer around proteins and micelles Chem. Rev. 105 3197-3219
[10]  
Hribar-Lee B(2006)Water mediation in protein folding and molecular recognition Annu. Rev. Biophys. Biomol. Struct. 35 389-415