Hybrid Riemannian conjugate gradient methods with global convergence properties

被引:0
作者
Hiroyuki Sakai
Hideaki Iiduka
机构
[1] Meiji University,Department of Computer Science
来源
Computational Optimization and Applications | 2020年 / 77卷
关键词
Conjugate gradient method; Riemannian optimization; Hybrid conjugate gradient method; Global convergence; Strong Wolfe conditions;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents Riemannian conjugate gradient methods and global convergence analyses under the strong Wolfe conditions. The main idea of the proposed methods is to combine the good global convergence properties of the Dai–Yuan method with the efficient numerical performance of the Hestenes–Stiefel method. One of the proposed algorithms is a generalization to Riemannian manifolds of the hybrid conjugate gradient method of the Dai and Yuan in Euclidean space. The proposed methods are compared well numerically with the existing methods for solving several Riemannian optimization problems. Python implementations of the methods used in the numerical experiments are available at https://github.com/iiduka-researches/202008-hybrid-rcg.
引用
收藏
页码:811 / 830
页数:19
相关论文
共 45 条
[1]  
Al-Baali M(1985)Descent property and global convergence of the Fletcher-Reeves method with inexact line search IMA J. Numer. Anal. 5 121-124
[2]  
Dai Y-H(1999)A nonlinear conjugate gradient method with a strong global convergence property SIAM J. Optim. 10 177-182
[3]  
Yuan Y(2001)An efficient hybrid conjugate gradient method for unconstrained optimization Ann. Oper. Res. 103 33-47
[4]  
Dai Y-H(2002)Benchmarking optimization software with performance profiles Math. Program. 91 201-213
[5]  
Yuan Y(1964)Function minimization by conjugate gradients Comput. J. 7 149-154
[6]  
Dolan ED(2006)A survey of nonlinear conjugate gradient methods Pac. J. Optim. 2 35-58
[7]  
Moré JJ(2013)Analysis operator learning and its application to image reconstruction IEEE Trans. Image Process. 22 2138-2150
[8]  
Fletcher R(1991)Global convergence result for conjugate gradient methods J. Optim. Theory Appl. 71 399-405
[9]  
Reeves CM(1965)Maxima for graphs and a new proof of a theorem of Turán Can. J. Math. 17 533-540
[10]  
Hager WW(1969)Note sur la convergence de méthodes de directions conjuguées ESAIM Math. Model. Numer. Anal.-Modélisation Mathématique et Analyse Numérique 3 35-43