Hybrid subconvexity bounds for twisted L-functions on GL(3)

被引:0
|
作者
Bingrong Huang
机构
[1] Shandong University,School of Mathematics
[2] Tel Aviv University,Current address: School of Mathematical Sciences
来源
Science China Mathematics | 2021年 / 64卷
关键词
-functions; subconvexity; GL(3); twisted; quadratic character; 11F66; 11F67; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a large prime, and χ the quadratic character modulo q. Let ϕ be a self-dual Hecke-Maass cusp form for SL(3, ℤ), and uj a Hecke-Maass cusp form for Г0(q) ⊆ SL(2, ℤ) with spectral parameter tj. We prove, for the first time, some hybrid subconvexity bounds for the twisted L-functions on GL(3), such as L(1/2,ϕ×uj×χ)≪ϕ,ε(q(1+|tj|))3/2−θ+ε,L(1/2+it,ϕ×χ)≪ϕ,ε(q(1+|t|))3/4−θ/2+ε,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left( {1/2,\phi \times {u_j} \times \chi } \right){ \ll _{\phi ,\varepsilon }}{\left( {q\left( {1 + \left| {{t_j}} \right|} \right)} \right)^{3/2 - \theta + \varepsilon }},L\left( {1/2 + it,\phi \times \chi } \right){ \ll _{\phi ,\varepsilon }}{\left( {q\left( {1 + \left| t \right|} \right)} \right)^{3/4 - \theta /2 + \varepsilon }},$$\end{document} for any ε > 0, where θ = 1/23 is admissible. The proofs depend on the first moment of a family of L-functions in short intervals. In order to bound this moment, we first use the approximate functional equations, the Kuznetsov formula, and the Voronoi formula to transform it to a complicated summation; and then we apply different methods to estimate it, which give us strong bounds in different aspects. We also use the stationary phase method and the large sieve inequalities.
引用
收藏
页码:443 / 478
页数:35
相关论文
共 50 条