A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation

被引:0
作者
Xuhong Yu
Xueqin Ye
Zhongqing Wang
机构
[1] University of Shanghai for Science and Technology,
来源
Numerical Algorithms | 2021年 / 88卷
关键词
Legendre-Laguerre spectral element method; The Camassa-Holm equation; Diagonalization technique; Numerical results; 65M70; 35Q35; 33C45;
D O I
暂无
中图分类号
学科分类号
摘要
An efficient and accurate Legendre-Laguerre spectral element method for solving the Camassa-Holm equation on the half line is proposed. The spectral element method has the flexibility for arbitrary h and p adaptivity. Two kinds of Sobolev orthogonal basis functions corresponding to each subinterval are constructed, which reduces the non-zero entries of linear systems and computational cost. Numerical experiments illustrate the effectiveness and accuracy of the suggested approach.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 55 条
[1]  
Ai Q(2018)Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems Appl. Numer. Math. 127 196-210
[2]  
Li HY(2006)Numerical Simulation of Camassa-Holm Peakons by Adaptive Upwinding Appl. Numer. Math. 56 695-711
[3]  
Wang ZQ(2016)Geometric numerical integration for peakon b-family equations Commun. Comput. Phys. 19 24-52
[4]  
Artebrant R(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[5]  
Schroll H(2008)A convergent finite difference scheme for the Camassa-Holm equation with general H1 initial data SIAM J. Numer. Anal. 46 1554-1579
[6]  
Cai W(2008)An explicit finite difference scheme for the Camassa-Holm equation Adv. Differ. Equ. 13 681-732
[7]  
Sun Y(2008)Multi-symplectic integration of the Camassa-Holm equation J. Comput. Phys. 227 5492-5512
[8]  
Wang Y(2011)Geometric finite difference schemes for the generalized hyperelastic-rod wave equation J. Comput. Appl. Math. 235 1925-1940
[9]  
Camassa R(1998)Global existence and blow-up for a shallow water equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 303-328
[10]  
Holm DD(2007)Spectral method for differential equations of degenerate type by using generalized Laguerre functions Appl. Numer. Math. 57 455-471