The exact meromorphic solutions of some nonlinear differential equations

被引:0
|
作者
Huifang Liu
Zhiqiang Mao
机构
[1] Jiangxi Normal University,School of Mathematics and Statistics
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
Nevanlinna theory; nonlinear differential equations; meromorphic functions; entire functions; 30D35; 34M05;
D O I
暂无
中图分类号
学科分类号
摘要
We find the exact forms of meromorphic solutions of the nonlinear differential equations fn+q(z)eQ(z)f(k)=p1eα1z+p2eα2z,n≥3,k≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f^n} + q(z){{\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\rm{e}}^{{\alpha _1}z}} + {p_2}{{\rm{e}}^{{\alpha _2}z}},\,\,\,\,n \ge 3,\,\,\,k \ge 1,$$\end{document} where q, Q are nonzero polynomials, Q ≡ Const., and p1, p2, α1, α2 are nonzero constants with α1 ≠ α2. Compared with previous results on the equation p(z)f3 + q(z)f″ = − sin α(z) with polynomial coefficients, our results show that the coefficient of the term f(k) perturbed by multiplying an exponential function will affect the structure of its solutions.
引用
收藏
页码:103 / 114
页数:11
相关论文
共 50 条