We find the exact forms of meromorphic solutions of the nonlinear differential equations fn+q(z)eQ(z)f(k)=p1eα1z+p2eα2z,n≥3,k≥1,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f^n} + q(z){{\rm{e}}^{Q(z)}}{f^{(k)}} = {p_1}{{\rm{e}}^{{\alpha _1}z}} + {p_2}{{\rm{e}}^{{\alpha _2}z}},\,\,\,\,n \ge 3,\,\,\,k \ge 1,$$\end{document} where q, Q are nonzero polynomials, Q ≡ Const., and p1, p2, α1, α2 are nonzero constants with α1 ≠ α2. Compared with previous results on the equation p(z)f3 + q(z)f″ = − sin α(z) with polynomial coefficients, our results show that the coefficient of the term f(k) perturbed by multiplying an exponential function will affect the structure of its solutions.