Almost involutive Hopf algebras

被引:0
作者
Abella A. [1 ]
Ferrer Santos W. [1 ]
机构
[1] Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo
关键词
Automorphisms; Graded algebra; Hopf algebra;
D O I
10.1007/s40863-015-0028-y
中图分类号
学科分类号
摘要
We define the concept of companion automorphism of a Hopf algebra H as an automorphism Σ: H→ H such that Σ2= S2, where S denotes the antipode. This automorphism can be viewed as a special additional symmetry. A Hopf algebra is said to be almost involutive (AI) if it admits a companion automorphism. We present examples and study some of the basic properties and constructions of AI-Hopf algebras centering the attention in the finite dimensional case. In particular we show that within the family of Hopf algebras of dimension smaller or equal than 15, only in dimension eight and twelve, there are non-almost involutive Hopf algebras. © 2015, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:273 / 285
页数:12
相关论文
共 20 条
[1]  
Abella A., Ferrer W., Haim M., Compact coalgebras, compact quantum groups and the positive antipode, São Paulo J. Math. Sci., 3, 2, pp. 193-229, (2009)
[2]  
Abella A., Ferrer W., Haim M., Some constructions of compact quantum groups, São Paulo J. Math. Sci., 6, 1, pp. 1-40, (2012)
[3]  
Andruskiewitsch N., Natale S., Counting arguments for Hopf algebras of low dimension, Tsukuba J. Math., 1, 25, pp. 187-201, (2001)
[4]  
Beattie M., Bulacu D., Torrecillas B., Radford’s S<sup>4</sup> formula for co-Frobenius Hopf algebras, J. Algebra, 307, 1, pp. 330-342, (2007)
[5]  
Beattie M., Garcia A., Classifying Hopf algebras of a given dimension, Contemp. Math., 585, pp. 125-152, (2013)
[6]  
Kac G.I., Certain arithmetic properties of ring groups, Funct. Anal. Appl., 6, 2, pp. 158-160, (1972)
[7]  
Kassel C., Quantum Groups, (1995)
[8]  
Majid S., Foundations of Quantum Group Theory, (1995)
[9]  
Masuoka A., Semisimple Hopf algebras of dimension 2p, Commun. Algebra, 23, pp. 1931-1940, (1995)
[10]  
Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, (1993)