Binary Codes and Partial Permutation Decoding Sets from the Johnson Graphs

被引:0
作者
W. Fish
机构
[1] University of the Western Cape,Department of Mathematics and Applied Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Johnson graphs; Binary codes; Automorphism group; Permutation decoding; 94B05; 05B30; 05C90; 05E20;
D O I
暂无
中图分类号
学科分类号
摘要
For k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}, n≥2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k$$\end{document}, the Johnson graph denoted by J(n,k),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(n,k),$$\end{document} is the graph with vertex-set the set of all k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-subsets of Ω={1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega = \{1, 2, \ldots , n\}$$\end{document}, and any two vertices u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} are adjacent if and only if |u∩v|=k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u \cap v| = k-1$$\end{document}. In this paper the binary codes and their duals generated by an adjacency matrix of J(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(n,k)$$\end{document} are described. The automorphism groups of the codes are determined, and by identifying suitable information sets, 3-PD-sets are determined for the code when k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is even.
引用
收藏
页码:1381 / 1396
页数:15
相关论文
共 10 条
[1]  
Key JD(2004)Permutation decoding for the binary codes from triangular graphs Eur. J. Combin. 25 113-123
[2]  
Moori J(2004)Binary codes from graphs on triples Discrete Math. 282 171-182
[3]  
Rodrigues BG(2005)PD-sets related to the codes of some classical varieties Discrete Math. 301 89-105
[4]  
Key JD(1964)Permutation decoding of systematic codes Bell Syst. Tech. J. 43 485-505
[5]  
Moori J(1984)The graphs J. Combin. Theory Ser. B 37 173-188
[6]  
Rodrigues BG(undefined) of the Johnson schemes are unique for undefined undefined undefined-undefined
[7]  
Kroll HJ(undefined)undefined undefined undefined undefined-undefined
[8]  
Vincenti R(undefined)undefined undefined undefined undefined-undefined
[9]  
MacWilliams FJ(undefined)undefined undefined undefined undefined-undefined
[10]  
Moon A(undefined)undefined undefined undefined undefined-undefined