Improvement of the mode I interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres

被引:0
作者
Dinh Duc Nguyen
Cuong Manh Vu
Hyoung Jin Choi
机构
[1] Ton Duc Thang University,Department for Management of Science and Technology Development & Faculty of Environment and Labour Safety
[2] Kyonggi University,Department of Environmental Energy Engineering
[3] Duy Tan University,Center for Advanced Chemistry, Institute of Research and Development
[4] Inha University,Department of Polymer Science and Engineering
来源
Polymer Bulletin | 2018年 / 75卷
关键词
Fracture toughness; Polystyrene electrospun nanofibers; Glass fiber reinforced epoxy composite; Electrospinning; Mode I interlaminar fracture toughness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the polystyrene nanofiber (PSnF) with diameter in range 40–80 nm were fabricated using electrospinning technique from solution of polystyrene in toluene and used as an effective filler for glass fiber reinforced epoxy composite materials (GF/EP) with contents in range from 0 to 0.1 wt%. GF/EP composites with absence and presence of PSnF were characterized by different techniques, namely; mode I interlaminar fracture toughness, tensile testing and scanning electron microscope. The bonding between GF and EP were also accessed by interfacial shear strength test (IFSS). The obtained results indicated that at 0.07 wt% of PSnF incorporation in epoxy matrix the stress intensity factor (KIC), initiation and propagation interlaminar fracture toughness in mode I were improved by 42.2% from 0.631 to 0.839 MPa m1/2, and 43% from 389.82 to 512.09 J/m2 and 47% from 401.38 to 545.34 J/m2, respectively, when compared to pristine epoxy resin as well as pristine composite material. The scanning electron microscopy (SEM) observation pointed out that fibers pull out during initiation delamination accounting for fracture toughness improvement the fracture surface of GF/EP.
引用
收藏
页码:5089 / 5102
页数:13
相关论文
共 50 条
  • [41] INFLUENCE OF PLY ORIENTATION ON INTERLAMINAR FRACTURE TOUGHNESS OF CARBON/EPOXY COMPOSITES
    Prodduturi, Ashok Kumar
    Pinninti, Ravinder Reddy
    Avss, Kumara Swami Gupta
    COMPOSITES-MECHANICS COMPUTATIONS APPLICATIONS, 2024, 15 (03): : 25 - 34
  • [42] Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres
    van der Heijden, Sam
    Daelemans, Lode
    De Schoenmaker, Bert
    De Baere, Ives
    Rahier, Hubert
    Van Paepegem, Wim
    De Clerck, Karen
    COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 104 : 66 - 73
  • [43] Mode-II interlaminar fracture toughness of carbon/epoxy laminates
    Saidpour, H
    Barikani, M
    Sezen, M
    IRANIAN POLYMER JOURNAL, 2003, 12 (05) : 389 - 400
  • [44] Effect of seawater ageing on interlaminar fracture toughness of carbon fiber/epoxy composites containing carbon nanofillers
    Alejandro Rodriguez-Gonzalez, Julio
    Rubio-Gonzalez, Carlos
    de Jesus Ku-Herrera, Jose
    Ramos-Galicia, Lourdes
    Velasco-Santos, Carlos
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2018, 37 (22) : 1346 - 1359
  • [45] Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites
    Kelkar, Ajit D.
    Mohan, Ram
    Bolick, Ronnie
    Shendokar, Sachin
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 168 (1-3): : 85 - 89
  • [46] Mode-I interlaminar fracture of carbon/epoxy cross-ply composites
    de Morais, AB
    de Moura, MF
    Marques, AT
    de Castro, PT
    COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (05) : 679 - 686
  • [47] The distinctiveness of measuring interlaminar fracture toughness by the mode I method
    Dordevic, Isidor
    Gordic, Milan
    Pesikan, Danijela
    Stevanovic, Momcilo
    HEMIJSKA INDUSTRIJA, 2007, 61 (02) : 79 - 82
  • [48] The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures
    Eskizeybek, Volkan
    Avci, Ahmet
    Gulce, Ahmet
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 63 : 94 - 102
  • [49] Mode I interlaminar fracture toughness behavior and mechanisms of bamboo
    Chen, Qi
    Dai, Chunping
    Fang, Changhua
    Chen, Meiling
    Zhang, Shuqin
    Liu, Rong
    Liu, Xianmiao
    Fei, Benhua
    MATERIALS & DESIGN, 2019, 183
  • [50] Mode II interlaminar fracture of glass/epoxy multidirectional laminates
    Pereira, AB
    de Morais, AB
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2004, 35 (02) : 265 - 272