On an optimal method for solving an inverse Stefan problem

被引:0
作者
Tanana V.P. [1 ]
Khudyshkina E.V. [1 ]
机构
[1] Chelyabinsk State University, Chelyabinsk 454021
基金
俄罗斯基础研究基金会;
关键词
Initial Problem; Stefan Problem; Exact Estimate; Transition Front; Isometric Operator;
D O I
10.1134/S1990478907020159
中图分类号
学科分类号
摘要
An algorithm optimal in order is proposed for solving an inverse Stefan problem. We also give some exact estimates of accuracy of this method. © Pleiades Publishing, Ltd. 2007.
引用
收藏
页码:254 / 259
页数:5
相关论文
共 11 条
[1]  
Gol'dman N.L., Inverse Stefan Problems: Theory and Solution Methods, (1999)
[2]  
Friedman A., Partial Differential Equations of Parabolic Type, (1968)
[3]  
Alifanov O.M., Artyukhin E.A., Rumyantsev S.V., Optimal Methods for Solving the Ill-Posed Problems, (1988)
[4]  
Lavrent'ev M.M., Savel'ev L.Ya., Theory of Operators and Ill-Posed Problems, (1999)
[5]  
Tanana V.P., On Optimality by Order of the Method of Projective Regularization for Solving Inverse Problems, Sibirsk. Zh. Industr. Mat., 7, 2, pp. 117-132, (2004)
[6]  
Ditkin V.A., Prudnikov A.P., Integral Transformations and Operational Calculus, (1961)
[7]  
Menikhes L.D., Tanana V.P., Finite-Dimensional Approximation in the M. M. Lavrent'ev Method, Sibirsk. Zh. Vychisl. Mat., 1, 1, pp. 59-66, (1998)
[8]  
Ivanov V.K., Korolyuk T.I., On an Error Estimate for Solution of Linear Ill-Posed Problems, Zh. Vychisl. Mat. I Mat. Fiz., 9, 1, pp. 30-41, (1969)
[9]  
Strakhov V.N., Solution of Linear Ill-Posed Problems in Hilbert Space, Differentsial'nye Uravneniya, 6, 8, pp. 1490-1495, (1970)
[10]  
Ivanov V.K., Vasin V.V., Tanana V.P., Theory of Ill-Posed Linear Problems and Its Applications, (1978)