On some generalizations of the factorization method

被引:0
|
作者
I. Z. Golubchik
V. V. Sokolov
机构
[1] Russian Academy of Sciences,Mathematical Institute, Ufa Scientific Center
来源
关键词
Soliton; Variable Coefficient; Factorization Method; Logarithmic Derivative; Triangular Matrice;
D O I
暂无
中图分类号
学科分类号
摘要
The classical factorization method reduces the study of a system of ordinary differential equations Ut=[U+, U] to solving algebraic equations. Here U(t) belongs to a Lie algebra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{G}$$ \end{document} which is the direct sum of its subalgebras\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{G}_ + $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{G}_ - $$ \end{document}, where “+” signifies the projection on\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{G}_ + $$ \end{document}. We generalize this method to the case\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{G}_ + \cap \mathfrak{G}_ - \ne \{ 0\} $$ \end{document}. The corresponding quadratic systems are reducible to a linear system with variable coefficients. It is shown that the generalized version of the factorization method can also be applied to Liouville equation-type systems of partial differential equations.
引用
收藏
页码:267 / 276
页数:9
相关论文
共 50 条
  • [1] On some generalizations of the factorization method
    Golubchik, IZ
    Sokolov, VV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (03) : 267 - 276
  • [2] SOME GENERALIZATIONS OF THE STATIONARY PHASE METHOD
    ISAKOVA, EK
    DOKLADY AKADEMII NAUK SSSR, 1979, 244 (06): : 1308 - 1311
  • [3] SOME GENERALIZATIONS OF THE CUTTING PLANE METHOD
    KHRAMOVA, NK
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1979, (02): : 116 - 117
  • [4] Some Generalizations of the Riemann Operator Method
    Alexandrovich, I. M.
    Sydorov, M. V-S
    Salnikova, S. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2021, 11 (02): : 163 - 175
  • [5] SOME GENERALIZATIONS ON THE METHOD OF SUPERPOSED EPOCH ANALYSIS
    SAMSON, JC
    YEUNG, KL
    PLANETARY AND SPACE SCIENCE, 1986, 34 (11) : 1133 - 1142
  • [6] SOME GENERALIZATIONS AND CLARIFICATIONS ABOUT THE USE OF THE INTERVAL METHOD
    Zeinal, Abasov Raghib
    REVISTA UNIVERSIDAD Y SOCIEDAD, 2024, 16 (02): : 384 - 393
  • [7] ON SOME GENERALIZATIONS OF ISOMETRICAL MAPPINGS AND THEIR APPLICATIONS - METHOD OF ITERATION
    BLEYER, A
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1969, 13 (04): : 257 - &
  • [9] Factorization method for some inhomogeneous Lienard equations
    Cornejo-Perez, O.
    Mancas, S. C.
    Rosu, H. C.
    Rico-Olvera, C. A.
    REVISTA MEXICANA DE FISICA, 2021, 67 (03) : 443 - 446
  • [10] Some fixed point generalizations are not real generalizations
    Haghi, R. H.
    Rezapour, Sh.
    Shahzad, N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1799 - 1803