Canonical transformations of the extended phase space and integrable systems

被引:0
作者
A. V. Tsyganov
机构
[1] St. Petersburg State University,
来源
Theoretical and Mathematical Physics | 2000年 / 124卷
关键词
Integrable System; Hamiltonian System; Hamilton Function; Canonical Transformation; Integrability Property;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the explicit construction of a canonical transformation of the time variable and the Hamiltonian whereby a given completely integrable system is mapped into another integrable system. The change of time induces a transformation of the equations of motion and of their solutions, the integrals of motion, the methods of separation of variables, the Lax matrices, and the correspondingr-matrices. For several specific families of integrable systems (Toda chains, Holt systems, and Stäckel-type systems), we construct canonical transformations of time in the extended phase space that preserve the integrability property.
引用
收藏
页码:918 / 937
页数:19
相关论文
共 50 条
  • [31] Degenerate invariant manifolds of some completely integrable systems
    Christine Médan
    Mathematische Zeitschrift, 1999, 232 : 665 - 689
  • [32] Degenerate integrable systems on the plane with a cubic integral of motion
    A. V. Tsyganov
    Theoretical and Mathematical Physics, 2000, 124 : 1217 - 1233
  • [33] Letter singularities of integrable and near-integrable hamiltonian systems
    T. Bau
    N. T. Zung
    Journal of Nonlinear Science, 1997, 7 : 1 - 7
  • [34] Lie Algebras and Integrable Systems
    Zhang Yu-Feng
    Mei Jian-Qin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (06) : 1012 - 1022
  • [35] Lie Algebras and Integrable Systems
    张玉峰
    梅建琴
    CommunicationsinTheoreticalPhysics, 2012, 57 (06) : 1012 - 1022
  • [36] Univalent Functions and Integrable Systems
    Dmitri Prokhorov
    Alexander Vasil'ev
    Communications in Mathematical Physics, 2006, 262 : 393 - 410
  • [37] Integrable Systems of Neumann Type
    Alina Dobrogowska
    Tudor S. Ratiu
    Journal of Dynamics and Differential Equations, 2015, 27 : 533 - 553
  • [38] Integrable systems and group actions
    Miranda, Eva
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (02): : 240 - 270
  • [39] Integrable Systems of Neumann Type
    Dobrogowska, Alina
    Ratiu, Tudor S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 533 - 553
  • [40] A geometry for multidimensional integrable systems
    Strachan, IAB
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (03) : 255 - 278