Essential character amenability of semigroup algebras

被引:0
作者
Hamid Sadeghi Nahrekhalaji
机构
[1] Islamic Azad University,Young Researchers and Elite Club, Fereydan Branch
来源
Semigroup Forum | 2021年 / 102卷
关键词
Banach algebra; Topological semigroup; -Amenability; Essential character amenability;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a foundation topological semigroup and Ma(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_a(S)$$\end{document} the space of all measures μ∈M(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in M(S)$$\end{document} for which the maps x⟼|μ|∗δx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\longmapsto |\mu |*\delta _{x}$$\end{document} and x⟼δx∗|μ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\longmapsto \delta _{x}*|\mu |$$\end{document} from S into M(S) are weakly continuous. In the present paper, we introduce and study the concept of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}-amenability for S and investigate the relations between ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document}-amenability of S and essential ϕ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\phi }$$\end{document}-amenability of Ma(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_a(S)$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} is a character on S and ϕ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\phi }$$\end{document} is the extension of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} to Ma(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_a(S)$$\end{document}.
引用
收藏
页码:528 / 542
页数:14
相关论文
共 39 条
  • [1] Baker AC(1972)Algebra of measures on a locally compact semigroup III J. Lond. Math. Soc. 4 685-695
  • [2] Baker JW(2020)Character inner amenability for semigroups Semigroup Forum 100 439-450
  • [3] Bodaghi A(1957)Amenable semigroups Illinois J. Math. 1 509-544
  • [4] Jabbari A(1949)Means on semigroups and groups Bull. Am. Math. Soc. 55 1054-1055
  • [5] Amini M(1998)Amenability of inverse semigroups and their semigroup algebras Proc. Roy. Soc. 80 309-321
  • [6] Day MM(2013)-Amenability and character amenability of some classes of Banach algebras Houston J. Math. 39 515-529
  • [7] Day MM(2012)On character amenability of semigroup algebras Acta. Math. Hungar. 134 177-192
  • [8] Duncan J(2004)Generalized notations of amenability J. Funct. Anal. Soc. 208 229-260
  • [9] Namioka I(2008)On Math. Proc. Camp. Phil. Soc. 144 85-96
  • [10] Essmaili M(2008)-amenability of Banach algebras J. Math. Anal. Appl. 344 942-955