A finite element method for time fractional partial differential equations

被引:0
作者
Neville J. Ford
Jingyu Xiao
Yubin Yan
机构
[1] University of Chester,Department of Mathematics
[2] Harbin Institute of Technology,Department of Mathematics
来源
Fractional Calculus and Applied Analysis | 2011年 / 14卷
关键词
fractional partial differential equations; finite element method; error estimates; numerical examples; Primary 65M12; Secondary 65M06, 65M60, 65M70, 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the finite element method for time fractional partial differential equations. The existence and uniqueness of the solutions are proved by using the Lax-Milgram Lemma. A time stepping method is introduced based on a quadrature formula approach. The fully discrete scheme is considered by using a finite element method and optimal convergence error estimates are obtained. The numerical examples at the end of the paper show that the experimental results are consistent with our theoretical results.
引用
收藏
页码:454 / 474
页数:20
相关论文
共 65 条
[1]  
Adolfsson K.(2003)Adaptive discretization of integro-differential equation with a weakly singular convolution kernel Comput. Methods Appl. Mech. Engrg. 192 5285-5304
[2]  
Enelund M.(2004)Adaptive discretization of fractional order viscoelasticity using sparse time history Comput. Methods Appl. Mech. Engrg. 193 4567-4590
[3]  
Larsson S.(1996)Subdiffusion and anomalous local viscoelasticity in actin networks Phys. Rev. Lett. 77 4470-138
[4]  
Adolfsson K.(2000)Form continuous time random walks to the fractional Fokker-Planck equation Phys. Rev. E 61 132-250
[5]  
Enelund M.(1996)The Green function of the diffusion of fluids in porous media with memory Rend. Fis. Acc. Lincei (Ser. 9) 7 243-493
[6]  
Larsson S.(1997)Generalized compound quadrature formulae for finite-part integrals IMA J. Numer. Anal. 17 479-6
[7]  
Amblard F.(1997)An algorithm for the numerical solution of differential equations of fractional order Electronic Trans. on Numerical Analysis 5 1-773
[8]  
Maggs A. C.(2005)Algorithms for the fractional calculus: A selection of numerical methods Computer Methods in Appl. Mechanics and Engineering 194 743-346
[9]  
Yurke B.(2001)The numerical solution of fractional differential equations: speed versus accuracy Numer. Algorithms 26 333-576
[10]  
Pargellis A. N.(2006)Variational formulation for the stationary fractional advection dispersion equation Numerical Meth. P.D.E. 22 558-281