Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions

被引:0
作者
Zhiyu Li
Zhanbing Bai
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
Boundary Value Problems | / 2019卷
关键词
Barrier strips; Conformable fractional derivative; Boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are dedicated to researching the boundary value problems (BVPs) for equation Dαx(t)=f(t,x(t),Dα−1x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }x(t)=f(t,x(t),D^{\alpha -1}x(t))$\end{document}, with the boundary value conditions to be either: x(0)=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=A$\end{document}, Dα−1x(1)=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha -1}x(1)=B$\end{document} or Dα−1x(0)=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha -1}x(0)=A$\end{document}, x(1)=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(1)=B$\end{document}. Let the nonlinear term f satisfy some sign conditions, then by making use of the Leray–Schauder nonlinear alternative, some existence results are obtained. In the end, an example is given to verify the main results.
引用
收藏
相关论文
共 126 条
  • [51] Garg V.(undefined)General conformable fractional derivative and its physical interpretation undefined undefined undefined-undefined
  • [52] Singh K.(undefined)Existence results for a functional boundary value problem of fractional differential equations undefined undefined undefined-undefined
  • [53] Granas A.(undefined)undefined undefined undefined undefined-undefined
  • [54] Guenther R.(undefined)undefined undefined undefined undefined-undefined
  • [55] Lee J.(undefined)undefined undefined undefined undefined-undefined
  • [56] He L.M.(undefined)undefined undefined undefined undefined-undefined
  • [57] Dong X.Y.(undefined)undefined undefined undefined undefined-undefined
  • [58] Bai Z.B.(undefined)undefined undefined undefined undefined-undefined
  • [59] Chen B.(undefined)undefined undefined undefined undefined-undefined
  • [60] He N.(undefined)undefined undefined undefined undefined-undefined