Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions

被引:0
作者
Zhiyu Li
Zhanbing Bai
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
Boundary Value Problems | / 2019卷
关键词
Barrier strips; Conformable fractional derivative; Boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are dedicated to researching the boundary value problems (BVPs) for equation Dαx(t)=f(t,x(t),Dα−1x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }x(t)=f(t,x(t),D^{\alpha -1}x(t))$\end{document}, with the boundary value conditions to be either: x(0)=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=A$\end{document}, Dα−1x(1)=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha -1}x(1)=B$\end{document} or Dα−1x(0)=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha -1}x(0)=A$\end{document}, x(1)=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(1)=B$\end{document}. Let the nonlinear term f satisfy some sign conditions, then by making use of the Leray–Schauder nonlinear alternative, some existence results are obtained. In the end, an example is given to verify the main results.
引用
收藏
相关论文
共 126 条
  • [1] Abdeljawad T.(2015)On conformable fractional calculus J. Comput. Appl. Math. 279 57-66
  • [2] Bai Z.B.(2010)On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 916-924
  • [3] Bai Z.B.(2014)On the existence of blow up solutions for a class of fractional differential equations Fract. Calc. Appl. Anal. 17 1175-1187
  • [4] Chen Y.Q.(2016)Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions Bound. Value Probl. 2016 495-505
  • [5] Li H.R.(2005)Positive solutions of boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2364-2372
  • [6] Sun S.J.(2016)Monotone iterative method for fractional differential equations Electron. J. Differ. Equ. 2016 1719-1725
  • [7] Bai Z.B.(2010)The existence of solutions for a fractional multi-point boundary value problem Comput. Math. Appl. 60 150-158
  • [8] Dong X.Y.(2011)Solvability of fractional three-point boundary value problems with nonlinear growth Appl. Math. Comput. 218 48-54
  • [9] Yin C.(2015)Fractional Newton mechanics with conformable fractional derivative J. Comput. Appl. Math. 290 229-248
  • [10] Bai Z.B.(2016)Uniqueness of solution for boundary value problems for fractional differential equations Appl. Math. Lett. 51 199-209