Calculus of variations in Hilbert spaces

被引:0
作者
L. Nurbekyan
机构
[1] University of Texas at Austin,
[2] Instituto Superior Tecnico,undefined
来源
Journal of Contemporary Mathematical Analysis | 2012年 / 47卷
关键词
Calculus of variations; Hilbert space; 49J27; 49K27; 49L25;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional variational problems in Hilbert spaces. We obtain existence of C2 local minimizers and prove that the value function of an optimal control problem solves corresponding Hamilton-Jacobi equation in a viscosity sense.
引用
收藏
页码:148 / 160
页数:12
相关论文
共 4 条
[1]  
Edgar A.(1968)Fréchet differentiability of convex functions Acta Math. 121 31-47
[2]  
Minty G. J.(1964)On the monotonicity of the gradient of a convex function Pacific J. Math. 14 243-247
[3]  
Ganghbo W.(2010)Lagrangian Dynamics on an infinite-dimensional torus; a Weak KAM theorem Adv. Math. 224 260-292
[4]  
Tudorascu A.(undefined)undefined undefined undefined undefined-undefined