Image Segmentation Using Euler’s Elastica as the Regularization

被引:0
作者
Wei Zhu
Xue-Cheng Tai
Tony Chan
机构
[1] University of Alabama,Department of Mathematics
[2] University of Bergen,Department of Mathematics
[3] Hong Kong University of Science and Technology (HKUST),Office of the President
来源
Journal of Scientific Computing | 2013年 / 57卷
关键词
Image segmentation; Euler’s elastica; Augmented Lagrangian method;
D O I
暂无
中图分类号
学科分类号
摘要
The active contour segmentation model of Chan and Vese has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.
引用
收藏
页码:414 / 438
页数:24
相关论文
共 63 条
  • [1] Ambrosio L(2003)A direct variational approach to a problem arising in image reconstruction Interfaces Free Bound. 5 63-81
  • [2] Masnou S(1990)Approximation of functionals depending on jumps by elliptic functionals via Gamma convergence Comm. Pure Appl. Math. 43 999-1036
  • [3] Ambrosio L(2011)Graph cuts for curvature based image denoising IEEE Trans. Image Process. 20 1199-1210
  • [4] Tortorelli VM(2004)Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes Comm. Pure Appl. Math. 57 764-790
  • [5] Bae E(1993)A geometric model for active contours Numerische Mathematik 66 1-31
  • [6] Shi J(1997)Geodesic active contours Int. J. Comput. Vis. 22 61-79
  • [7] Tai X-C(1997)Image recovery via total variation minimization and related problems Numer. Math. 76 167-188
  • [8] Bertozzi AL(2001)Active contours without edges IEEE Trans. Image Process. 10 266-277
  • [9] Greer JB(2006)Algorithms for finding global minimizers of denoising and segmentation models SIAM J. Appl. Math. 66 1632-1648
  • [10] Caselles V(2002)Euler’s elastica and curvature based inpaintings SIAM J. Appl. Math 63 564-592