Chicoric acid ameliorates LPS-induced inflammatory injury in bovine lamellar keratinocytes by modulating the TLR4/MAPK/NF-κB signaling pathway

被引:0
|
作者
Xiang Lan
Dongdong Qi
Hao Ren
Tao Liu
Hong Shao
Jiantao Zhang
机构
[1] Northeast Agricultural University,College of Veterinary Medicine
[2] Northeast Agricultural University,Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine
[3] Northeast Agricultural University,The Key Laboratory of Dairy Science of Education Ministry
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Damage to lamellar keratinocytes, an essential cellular component of the epidermal layer of hoof tissue, can have a detrimental effect on hoof health and the overall production value of dairy cows. We isolated and cultured cow lamellar keratinocytes using the Dispase II and collagenase methods. We purified them by differential digestion and differential velocity adherent methods at each passaging and identified them by keratin 14 immunofluorescence. We established an in vitro model of inflammation in laminar keratinocytes using LPS and investigated whether chicoric acid protects against inflammatory responses by inhibiting the activation of the TLR4/MAPK/NF-κB signaling pathway. The results showed that cow lamellar keratinocytes were successfully isolated and cultured by Dispase II combined with the collagenase method. In the in vitro inflammation model established by LPS, the Chicoric acid decreased the concentration of inflammatory mediators (TNF-α, IL-1β, and IL-6), down-regulated the mRNA expression of TLR4 and MyD88 (P < 0.01), down-regulated the expression of TLR4, MyD88, p-ERK, p-p38, IKKβ, p-p65, p-p50 (P < 0.05), and increased the IκBα protein expression (P < 0.05). In conclusion, Chicoric acid successfully protected cow lamellar keratinocytes from LPS-induced inflammatory responses by modulating the TLR4/MAPK/NF-κB signaling pathway and downregulating inflammatory mediators.
引用
收藏
相关论文
共 50 条
  • [1] Chicoric acid ameliorates LPS-induced inflammatory injury in bovine lamellar keratinocytes by modulating the TLR4/MAPK/NF-κB signaling pathway
    Lan, Xiang
    Qi, Dongdong
    Ren, Hao
    Liu, Tao
    Shao, Hong
    Zhang, Jiantao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Zhang, Hua
    Wu, Zhi-min
    Yang, Ya-ping
    Shaukat, Aftab
    Yang, Jing
    Guo, Ying-fang
    Zhang, Tao
    Zhu, Xin-ying
    Qiu, Jin-xia
    Deng, Gan-zhen
    Shi, Dong-mei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2019, 20 (10): : 816 - 827
  • [3] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua Zhang
    Zhi-min Wu
    Ya-ping Yang
    Aftab Shaukat
    Jing Yang
    Ying-fang Guo
    Tao Zhang
    Xin-ying Zhu
    Jin-xia Qiu
    Gan-zhen Deng
    Dong-mei Shi
    Journal of Zhejiang University-SCIENCE B, 2020, 21 : 341 - 341
  • [4] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhimin WU
    Yaping YANG
    Aftab SHAUKAT
    Jing YANG
    Yingfang GUO
    Tao ZHANG
    Xinying ZHU
    Jinxia QIU
    Ganzhen DENG
    Dongmei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, 21 (04) : 341
  • [5] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhi-min WU
    Ya-ping YANG
    Aftab SHAUKAT
    Jing YANG
    Ying-fang GUO
    Tao ZHANG
    Xin-ying ZHU
    Jin-xia QIU
    Gan-zhen DENG
    Dong-mei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, (04) : 341 - 341
  • [6] Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway
    Ali, Waqar
    Choe, Kyonghwan
    Park, Jun Sung
    Ahmad, Riaz
    Park, Hyun Young
    Kang, Min Hwa
    Park, Tae Ju
    Kim, Myeong Ok
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [7] Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells
    Che, Hao-Yu
    Zhou, Chang-Hai
    Lyu, Chen-Chen
    Meng, Yu
    He, Yun-Tong
    Wang, Hao-Qi
    Wu, Hong-Yu
    Zhang, Jia-Bao
    Yuan, Bao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [8] Sodium houttuyfonate inhibits LPS-induced inflammatory response via suppressing TLR4/NF-κB signaling pathway in bovine mammary epithelial cells
    Wang, Wenqing
    Hu, Xiaoyu
    Shen, Peng
    Zhang, Naisheng
    Fu, Yunhe
    MICROBIAL PATHOGENESIS, 2017, 107 : 12 - 16
  • [9] Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice
    He, Xuexiu
    Wei, Zhengkai
    Zhou, Ershun
    Chen, Libin
    Kou, Jinhua
    Wang, Jingjing
    Yang, Zhengtao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2015, 28 (01) : 470 - 476
  • [10] Akkermansia muciniphila attenuates LPS-induced acute kidney injury by inhibiting TLR4/NF-?B pathway
    Shi, Jun
    Wang, Feng
    Tang, Lei
    Li, Zhiqiang
    Yu, Manshu
    Bai, Yu
    Weng, Zebin
    Sheng, Meixiao
    He, Weiming
    Chen, Yugen
    FEMS MICROBIOLOGY LETTERS, 2022, 369 (01)