Bounds on Gromov hyperbolicity constant in graphs

被引:0
|
作者
JOSÉ M RODRÍGUEZ
JOSÉ M SIGARRETA
机构
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] Universidad Autónoma de Guerrero,Facultad de Matemáticas
来源
Proceedings - Mathematical Sciences | 2012年 / 122卷
关键词
Infinite graphs; Cartesian product graphs; independence number; dominantion number; geodesics; Gromov hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $\end{document} In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [41] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [42] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Bhaskar Das Gupta
    Marek Karpinski
    Nasim Mobasheri
    Farzane Yahyanejad
    Algorithmica, 2018, 80 : 772 - 800
  • [43] Characterization of Gromov Hyperbolic Short Graphs
    José Manuel RODRIGUEZ
    Acta Mathematica Sinica(English Series), 2014, 30 (02) : 197 - 212
  • [44] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Das Gupta, Bhaskar
    Karpinski, Marek
    Mobasheri, Nasim
    Yahyanejad, Farzane
    ALGORITHMICA, 2018, 80 (02) : 772 - 800
  • [45] Characterization of Gromov hyperbolic short graphs
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 197 - 212
  • [46] Gromov hyperbolic graphs
    Bermudo, Sergio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1575 - 1585
  • [47] Characterization of Gromov hyperbolic short graphs
    José Manuel Rodríguez
    Acta Mathematica Sinica, English Series, 2014, 30 : 197 - 212
  • [48] Computing the hyperbolicity constant
    Bermudo, Sergio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4592 - 4595
  • [49] Gromov hyperbolicity and convex tessellation graph
    Carballosa, W.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 24 - 34
  • [50] Gromov hyperbolicity and convex tessellation graph
    W. Carballosa
    Acta Mathematica Hungarica, 2017, 151 : 24 - 34