Bounds on Gromov hyperbolicity constant in graphs

被引:0
|
作者
JOSÉ M RODRÍGUEZ
JOSÉ M SIGARRETA
机构
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] Universidad Autónoma de Guerrero,Facultad de Matemáticas
来源
Proceedings - Mathematical Sciences | 2012年 / 122卷
关键词
Infinite graphs; Cartesian product graphs; independence number; dominantion number; geodesics; Gromov hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $\end{document} In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [31] Hyperbolicity in median graphs
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (04): : 455 - 467
  • [32] Hyperbolicity and parameters of graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ARS COMBINATORIA, 2011, 100 : 43 - 63
  • [33] Hyperbolicity in median graphs
    JOSÉ M SIGARRETA
    Proceedings - Mathematical Sciences, 2013, 123 : 455 - 467
  • [34] Distortion of the hyperbolicity constant of a graph
    Carballosa, Walter
    Pestana, Domingo
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01)
  • [35] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [36] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    Acta Mathematica Sinica(English Series), 2007, 23 (02) : 209 - 228
  • [37] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [38] Geometric characterizations of Gromov hyperbolicity
    Zoltán M. Balogh
    Stephen M. Buckley
    Inventiones mathematicae, 2003, 153 : 261 - 301
  • [39] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228