共 50 条
Bounds on Gromov hyperbolicity constant in graphs
被引:0
|作者:
JOSÉ M RODRÍGUEZ
JOSÉ M SIGARRETA
机构:
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] Universidad Autónoma de Guerrero,Facultad de Matemáticas
来源:
Proceedings - Mathematical Sciences
|
2012年
/
122卷
关键词:
Infinite graphs;
Cartesian product graphs;
independence number;
dominantion number;
geodesics;
Gromov hyperbolicity;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $\end{document} In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
引用
收藏
页码:53 / 65
页数:12
相关论文