Bounds on Gromov hyperbolicity constant in graphs

被引:0
|
作者
JOSÉ M RODRÍGUEZ
JOSÉ M SIGARRETA
机构
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] Universidad Autónoma de Guerrero,Facultad de Matemáticas
来源
Proceedings - Mathematical Sciences | 2012年 / 122卷
关键词
Infinite graphs; Cartesian product graphs; independence number; dominantion number; geodesics; Gromov hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $\end{document} In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [21] Knot graphs and Gromov hyperbolicity
    Jabuka, Stanislav
    Liu, Beibei
    Moore, Allison H.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 811 - 834
  • [22] Knot graphs and Gromov hyperbolicity
    Stanislav Jabuka
    Beibei Liu
    Allison H. Moore
    Mathematische Zeitschrift, 2022, 301 : 811 - 834
  • [23] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [24] On the hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    Villeta, Maria
    DISCRETE MATHEMATICS, 2011, 311 (04) : 211 - 219
  • [25] The hyperbolicity constant of infinite circulant graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    OPEN MATHEMATICS, 2017, 15 : 800 - 814
  • [26] Small values of the hyperbolicity constant in graphs
    Bermudo, Sergio
    Rodriguez, Jose M.
    Rosario, Omar
    Sigarreta, Jose M.
    DISCRETE MATHEMATICS, 2016, 339 (12) : 3073 - 3084
  • [27] New inequalities on the hyperbolicity constant of line graphs
    Carballosa, Walter
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    ARS COMBINATORIA, 2016, 129 : 367 - 386
  • [28] On the Hyperbolicity Constant of Line Graphs
    Carballosa, Walter
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01)
  • [29] On the hyperbolicity constant of circular-arc graphs
    Reyes, Rosalio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 244 - 256
  • [30] Cheeger isoperimetric constant of Gromov hyperbolic manifolds and graphs
    Martinez-Perez, Alvaro
    Rodriguez, Jose M.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)