Bounds on Gromov hyperbolicity constant in graphs

被引:0
|
作者
JOSÉ M RODRÍGUEZ
JOSÉ M SIGARRETA
机构
[1] Universidad Carlos III de Madrid,Departamento de Matemáticas
[2] Universidad Autónoma de Guerrero,Facultad de Matemáticas
来源
Proceedings - Mathematical Sciences | 2012年 / 122卷
关键词
Infinite graphs; Cartesian product graphs; independence number; dominantion number; geodesics; Gromov hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
If X is a geodesic metric space and x1,x2,x3 ∈ X, a geodesic triangleT = {x1,x2,x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta(X)=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\}\,. $\end{document} In this paper we relate the hyperbolicity constant of a graph with some known parameters of the graph, as its independence number, its maximum and minimum degree and its domination number. Furthermore, we compute explicitly the hyperbolicity constant of some class of product graphs.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [1] Bounds on Gromov hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 53 - 65
  • [2] Bounds on Gromov hyperbolicity constant
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 321 - 342
  • [3] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [4] Gromov hyperbolicity in Cartesian product graphs
    Junior Michel
    José M. Rodríguez
    José M. Sigarreta
    María Villeta
    Proceedings - Mathematical Sciences, 2010, 120 : 593 - 609
  • [5] Gromov hyperbolicity in Cartesian product graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 593 - 609
  • [6] Gromov hyperbolicity of planar graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Rodriguez, Jose M.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (10): : 1817 - 1830
  • [7] Gromov Hyperbolicity of Periodic Graphs
    Canton, Alicia
    Granados, Ana
    Pestana, Domingo
    Rodriguez, Jose M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S89 - S116
  • [8] Gromov Hyperbolicity of Regular Graphs
    Carlos Hernandez-Gomez, J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Torres-Nunez, Yadira
    Villeta, Maria
    ARS COMBINATORIA, 2017, 130 : 395 - 416
  • [9] Gromov Hyperbolicity of Periodic Graphs
    Alicia Cantón
    Ana Granados
    Domingo Pestana
    José M. Rodríguez
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 89 - 116
  • [10] Gromov Hyperbolicity of Periodic Planar Graphs
    Alicia CANTóN
    Ana GRANADOS
    Domingo PESTANA
    José Manuel RODRíGUEZ
    Acta Mathematica Sinica,English Series, 2014, (01) : 79 - 90