The Green–Tao theorem for primes of the form x2+y2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+y^2+1$$\end{document}

被引:0
|
作者
Yu-Chen Sun
Hao Pan
机构
[1] Nanjing University,Medical School
[2] Nanjing University of Finance and Economics,School of Applied Mathematics
关键词
Prime; Arithmetic progression; Pseudorandom measure; Primary 11P32; Secondary 11B25; 11B30; 11N36;
D O I
10.1007/s00605-018-1245-0
中图分类号
学科分类号
摘要
We prove that the primes of the form x2+y2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+y^2+1$$\end{document} contain arbitrarily long non-trivial arithmetic progressions.
引用
收藏
页码:715 / 733
页数:18
相关论文
共 15 条