共 50 条
Fractals of graphene quantum dots in photoluminescence of shungite
被引:0
|作者:
B. S. Razbirin
N. N. Rozhkova
E. F. Sheka
D. K. Nelson
A. N. Starukhin
机构:
[1] Russian Academy of Sciences,Ioffe Physicotechnical Institute
[2] Russian Academy of Sciences,Institute of Geology, Karelian Research Centre
[3] Peoples’ Friendship University of Russia,undefined
来源:
关键词:
Surface Enhance Raman Scattering;
Carbon Tetrachloride;
Photoluminescence Spectrum;
Reduce Graphene Oxide;
Fractal Structure;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Viewing shungite as loosely packed fractal nets of graphene-based (reduced graphene oxide, rGO) quantum dots (GQDs), we consider photoluminescence of the latter as a convincing proof of the structural concept as well as of the GQD attribution to individual rGO fragments. We study emission from shungite GQDs for colloidal dispersions in water, carbon tetrachloride, and toluene at both room and low temperatures. As expected, the photoluminescence of the GQD aqueous dispersions is quite similar to that of synthetic GQDs of the rGO origin. The morphological study of shungite dispersions shows a steady trend of GQDs to form fractals and to drastically change the colloid fractal structure caused by the solvent exchange. Spectral study reveals a dual character of the emitting centers: individual GQDs are responsible for the spectra position while the fractal structure of GQD colloids ensures high broadening of the spectra due to structural inhomogeneity, thus causing a peculiar dependence of the photoluminescence spectra on the excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions, which paves the way for a theoretical treatment of the GQD photonics.
引用
收藏
页码:735 / 746
页数:11
相关论文